/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CTI.h" #if ENABLE(CTI) #include "CodeBlock.h" #include "JSArray.h" #include "Machine.h" #include "wrec/WREC.h" using namespace std; namespace JSC { #if COMPILER(GCC) && PLATFORM(X86) asm( ".globl _ctiTrampoline" "\n" "_ctiTrampoline:" "\n" "pushl %esi" "\n" "pushl %edi" "\n" "subl $0x24, %esp" "\n" "movl $512, %esi" "\n" "call *0x30(%esp)" "\n" //Ox30 = 0x0C * 4, 0x0C = CTI_ARGS_code "addl $0x24, %esp" "\n" "popl %edi" "\n" "popl %esi" "\n" "ret" "\n" ); asm( ".globl _ctiVMThrowTrampoline" "\n" "_ctiVMThrowTrampoline:" "\n" #ifndef NDEBUG "movl 0x34(%esp), %ecx" "\n" //Ox34 = 0x0D * 4, 0x0D = CTI_ARGS_exec "cmpl $0, 8(%ecx)" "\n" "jne 1f" "\n" "int3" "\n" "1:" "\n" #endif "call __ZN3JSC7Machine12cti_vm_throwEPv" "\n" "addl $0x24, %esp" "\n" "popl %edi" "\n" "popl %esi" "\n" "ret" "\n" ); #elif COMPILER(MSVC) extern "C" { __declspec(naked) JSValue* ctiTrampoline(void* code, ExecState* exec, RegisterFile* registerFile, Register* r, ScopeChainNode* scopeChain, CodeBlock* codeBlock, JSValue** exception, Profiler**) { __asm { push esi; push edi; sub esp, 0x24; mov esi, 512; mov [esp], esp; call [esp + 0x30]; add esp, 0x24; pop edi; pop esi; ret; } } __declspec(naked) void ctiVMThrowTrampoline() { __asm { mov [esp], esp; call JSC::Machine::cti_vm_throw; add esp, 0x24; pop edi; pop esi; ret; } } } #endif // get arg puts an arg from the SF register array into a h/w register ALWAYS_INLINE void CTI::emitGetArg(unsigned src, X86Assembler::RegisterID dst) { // TODO: we want to reuse values that are already in registers if we can - add a register allocator! if (src < m_codeBlock->constantRegisters.size()) { JSValue* js = m_codeBlock->constantRegisters[src].jsValue(m_exec); m_jit.movl_i32r(reinterpret_cast(js), dst); } else m_jit.movl_mr(src * sizeof(Register), X86::edi, dst); } // get arg puts an arg from the SF register array onto the stack, as an arg to a context threaded function. ALWAYS_INLINE void CTI::emitGetPutArg(unsigned src, unsigned offset, X86Assembler::RegisterID scratch) { if (src < m_codeBlock->constantRegisters.size()) { JSValue* js = m_codeBlock->constantRegisters[src].jsValue(m_exec); m_jit.movl_i32m(reinterpret_cast(js), offset + sizeof(void*), X86::esp); } else { m_jit.movl_mr(src * sizeof(Register), X86::edi, scratch); m_jit.movl_rm(scratch, offset + sizeof(void*), X86::esp); } } // puts an arg onto the stack, as an arg to a context threaded function. ALWAYS_INLINE void CTI::emitPutArg(X86Assembler::RegisterID src, unsigned offset) { m_jit.movl_rm(src, offset + sizeof(void*), X86::esp); } ALWAYS_INLINE void CTI::emitPutArgConstant(unsigned value, unsigned offset) { m_jit.movl_i32m(value, offset + sizeof(void*), X86::esp); } ALWAYS_INLINE JSValue* CTI::getConstantImmediateNumericArg(unsigned src) { if (src < m_codeBlock->constantRegisters.size()) { JSValue* js = m_codeBlock->constantRegisters[src].jsValue(m_exec); return JSImmediate::isNumber(js) ? js : 0; } return 0; } ALWAYS_INLINE void CTI::emitPutCTIParam(void* value, unsigned name) { m_jit.movl_i32m(reinterpret_cast(value), name * sizeof(void*), X86::esp); } ALWAYS_INLINE void CTI::emitPutCTIParam(X86Assembler::RegisterID from, unsigned name) { m_jit.movl_rm(from, name * sizeof(void*), X86::esp); } ALWAYS_INLINE void CTI::emitGetCTIParam(unsigned name, X86Assembler::RegisterID to) { m_jit.movl_mr(name * sizeof(void*), X86::esp, to); } ALWAYS_INLINE void CTI::emitPutToCallFrameHeader(X86Assembler::RegisterID from, RegisterFile::CallFrameHeaderEntry entry) { m_jit.movl_rm(from, -((m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize) - entry) * sizeof(Register), X86::edi); } ALWAYS_INLINE void CTI::emitGetFromCallFrameHeader(RegisterFile::CallFrameHeaderEntry entry, X86Assembler::RegisterID to) { m_jit.movl_mr(-((m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize) - entry) * sizeof(Register), X86::edi, to); } ALWAYS_INLINE void CTI::emitPutResult(unsigned dst, X86Assembler::RegisterID from) { m_jit.movl_rm(from, dst * sizeof(Register), X86::edi); // FIXME: #ifndef NDEBUG, Write the correct m_type to the register. } ALWAYS_INLINE void CTI::emitInitialiseRegister(unsigned dst) { m_jit.movl_i32m(reinterpret_cast(jsUndefined()), dst * sizeof(Register), X86::edi); // FIXME: #ifndef NDEBUG, Write the correct m_type to the register. } #if ENABLE(SAMPLING_TOOL) unsigned inCalledCode = 0; #endif void ctiSetReturnAddress(void** where, void* what) { *where = what; } void ctiRepatchCallByReturnAddress(void* where, void* what) { (static_cast(where))[-1] = reinterpret_cast(reinterpret_cast(what) - reinterpret_cast(where)); } #ifdef NDEBUG ALWAYS_INLINE void CTI::emitDebugExceptionCheck() { } #else ALWAYS_INLINE void CTI::emitDebugExceptionCheck() { emitGetCTIParam(CTI_ARGS_exec, X86::ecx); m_jit.cmpl_i32m(0, OBJECT_OFFSET(ExecState, m_exception), X86::ecx); X86Assembler::JmpSrc noException = m_jit.emitUnlinkedJe(); m_jit.emitInt3(); m_jit.link(noException, m_jit.label()); } void CTI::printOpcodeOperandTypes(unsigned src1, unsigned src2) { char which1 = '*'; if (src1 < m_codeBlock->constantRegisters.size()) { JSValue* js = m_codeBlock->constantRegisters[src1].jsValue(m_exec); which1 = JSImmediate::isImmediate(js) ? (JSImmediate::isNumber(js) ? 'i' : JSImmediate::isBoolean(js) ? 'b' : js->isUndefined() ? 'u' : js->isNull() ? 'n' : '?') : (js->isString() ? 's' : js->isObject() ? 'o' : 'k'); } char which2 = '*'; if (src2 < m_codeBlock->constantRegisters.size()) { JSValue* js = m_codeBlock->constantRegisters[src2].jsValue(m_exec); which2 = JSImmediate::isImmediate(js) ? (JSImmediate::isNumber(js) ? 'i' : JSImmediate::isBoolean(js) ? 'b' : js->isUndefined() ? 'u' : js->isNull() ? 'n' : '?') : (js->isString() ? 's' : js->isObject() ? 'o' : 'k'); } if ((which1 != '*') | (which2 != '*')) fprintf(stderr, "Types %c %c\n", which1, which2); } #endif ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCall(unsigned opcodeIndex, CTIHelper_j helper) { #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(1, &inCalledCode); #endif X86Assembler::JmpSrc call = m_jit.emitCall(); m_calls.append(CallRecord(call, helper, opcodeIndex)); emitDebugExceptionCheck(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(0, &inCalledCode); #endif return call; } ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCall(unsigned opcodeIndex, CTIHelper_p helper) { #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(1, &inCalledCode); #endif X86Assembler::JmpSrc call = m_jit.emitCall(); m_calls.append(CallRecord(call, helper, opcodeIndex)); emitDebugExceptionCheck(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(0, &inCalledCode); #endif return call; } ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCall(unsigned opcodeIndex, CTIHelper_b helper) { #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(1, &inCalledCode); #endif X86Assembler::JmpSrc call = m_jit.emitCall(); m_calls.append(CallRecord(call, helper, opcodeIndex)); emitDebugExceptionCheck(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(0, &inCalledCode); #endif return call; } ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCall(unsigned opcodeIndex, CTIHelper_v helper) { #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(1, &inCalledCode); #endif X86Assembler::JmpSrc call = m_jit.emitCall(); m_calls.append(CallRecord(call, helper, opcodeIndex)); emitDebugExceptionCheck(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(0, &inCalledCode); #endif return call; } ALWAYS_INLINE X86Assembler::JmpSrc CTI::emitCall(unsigned opcodeIndex, CTIHelper_s helper) { #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(1, &inCalledCode); #endif X86Assembler::JmpSrc call = m_jit.emitCall(); m_calls.append(CallRecord(call, helper, opcodeIndex)); emitDebugExceptionCheck(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(0, &inCalledCode); #endif return call; } ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotJSCell(X86Assembler::RegisterID reg, unsigned opcodeIndex) { m_jit.testl_i32r(JSImmediate::TagMask, reg); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), opcodeIndex)); } ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotImmNum(X86Assembler::RegisterID reg, unsigned opcodeIndex) { m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, reg); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), opcodeIndex)); } ALWAYS_INLINE void CTI::emitJumpSlowCaseIfNotImmNums(X86Assembler::RegisterID reg1, X86Assembler::RegisterID reg2, unsigned opcodeIndex) { m_jit.movl_rr(reg1, X86::ecx); m_jit.andl_rr(reg2, X86::ecx); emitJumpSlowCaseIfNotImmNum(X86::ecx, opcodeIndex); } ALWAYS_INLINE unsigned CTI::getDeTaggedConstantImmediate(JSValue* imm) { ASSERT(JSImmediate::isNumber(imm)); return reinterpret_cast(imm) & ~JSImmediate::TagBitTypeInteger; } ALWAYS_INLINE void CTI::emitFastArithDeTagImmediate(X86Assembler::RegisterID reg) { // op_mod relies on this being a sub - setting zf if result is 0. m_jit.subl_i8r(JSImmediate::TagBitTypeInteger, reg); } ALWAYS_INLINE void CTI::emitFastArithReTagImmediate(X86Assembler::RegisterID reg) { m_jit.addl_i8r(JSImmediate::TagBitTypeInteger, reg); } ALWAYS_INLINE void CTI::emitFastArithPotentiallyReTagImmediate(X86Assembler::RegisterID reg) { m_jit.orl_i32r(JSImmediate::TagBitTypeInteger, reg); } ALWAYS_INLINE void CTI::emitFastArithImmToInt(X86Assembler::RegisterID reg) { m_jit.sarl_i8r(1, reg); } ALWAYS_INLINE void CTI::emitFastArithIntToImmOrSlowCase(X86Assembler::RegisterID reg, unsigned opcodeIndex) { m_jit.addl_rr(reg, reg); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), opcodeIndex)); emitFastArithReTagImmediate(reg); } ALWAYS_INLINE void CTI::emitFastArithIntToImmNoCheck(X86Assembler::RegisterID reg) { m_jit.addl_rr(reg, reg); emitFastArithReTagImmediate(reg); } ALWAYS_INLINE void CTI::emitTagAsBoolImmediate(X86Assembler::RegisterID reg) { m_jit.shl_i8r(JSImmediate::ExtendedPayloadShift, reg); m_jit.orl_i32r(JSImmediate::FullTagTypeBool, reg); } CTI::CTI(Machine* machine, ExecState* exec, CodeBlock* codeBlock) : m_jit(machine->jitCodeBuffer()) , m_machine(machine) , m_exec(exec) , m_codeBlock(codeBlock) , m_labels(codeBlock ? codeBlock->instructions.size() : 0) , m_structureStubCompilationInfo(codeBlock ? codeBlock->structureIDInstructions.size() : 0) { } #define CTI_COMPILE_BINARY_OP(name) \ case name: { \ emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); \ emitCall(i, Machine::cti_##name); \ emitPutResult(instruction[i + 1].u.operand); \ i += 4; \ break; \ } #define CTI_COMPILE_UNARY_OP(name) \ case name: { \ emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ emitCall(i, Machine::cti_##name); \ emitPutResult(instruction[i + 1].u.operand); \ i += 3; \ break; \ } #if ENABLE(SAMPLING_TOOL) OpcodeID currentOpcodeID = static_cast(-1); #endif void CTI::compileOpCall(Instruction* instruction, unsigned i, CompileOpCallType type) { int dst = instruction[i + 1].u.operand; int firstArg = instruction[i + 4].u.operand; int argCount = instruction[i + 5].u.operand; if (type == OpConstruct) { emitPutArgConstant(reinterpret_cast(instruction + i), 16); emitPutArgConstant(argCount, 12); emitPutArgConstant(firstArg, 8); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); } else { emitPutArgConstant(reinterpret_cast(instruction + i), 16); emitPutArgConstant(argCount, 12); emitPutArgConstant(firstArg, 8); // FIXME: should this be loaded dynamically off m_exec? int thisVal = instruction[i + 3].u.operand; if (thisVal == missingThisObjectMarker()) { emitPutArgConstant(reinterpret_cast(m_exec->globalThisValue()), 4); } else emitGetPutArg(thisVal, 4, X86::ecx); } X86Assembler::JmpSrc wasEval; if (type == OpCallEval) { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_call_eval); m_jit.emitRestoreArgumentReference(); emitGetCTIParam(CTI_ARGS_r, X86::edi); // edi := r m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::impossibleValue()), X86::eax); wasEval = m_jit.emitUnlinkedJne(); // this reloads the first arg into ecx (checked just below). emitGetArg(instruction[i + 2].u.operand, X86::ecx); } else { // this sets up the first arg, and explicitly leaves the value in ecx (checked just below). emitGetArg(instruction[i + 2].u.operand, X86::ecx); emitPutArg(X86::ecx, 0); } // initializeCallFrame! m_jit.movl_i32m(reinterpret_cast(m_codeBlock), (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::CallerCodeBlock) * sizeof(Register), X86::edi); m_jit.movl_i32m(reinterpret_cast(instruction + i), (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::ReturnVPC) * sizeof(Register), X86::edi); emitGetCTIParam(CTI_ARGS_scopeChain, X86::edx); m_jit.movl_rm(X86::edx, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::CallerScopeChain) * sizeof(Register), X86::edi); m_jit.movl_rm(X86::edi, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::CallerRegisters) * sizeof(Register), X86::edi); m_jit.movl_i32m(dst, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::ReturnValueRegister) * sizeof(Register), X86::edi); m_jit.movl_i32m(firstArg, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::ArgumentStartRegister) * sizeof(Register), X86::edi); m_jit.movl_i32m(argCount, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::ArgumentCount) * sizeof(Register), X86::edi); m_jit.movl_rm(X86::ecx, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::Callee) * sizeof(Register), X86::edi); m_jit.movl_i32m(0, (firstArg - RegisterFile::CallFrameHeaderSize + RegisterFile::OptionalCalleeActivation) * sizeof(Register), X86::edi); // CTIReturnEIP (set in callee) // Fast check for JS function. m_jit.testl_i32r(JSImmediate::TagMask, X86::ecx); X86Assembler::JmpSrc isNotObject = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsFunctionVptr), X86::ecx); X86Assembler::JmpSrc isJSFunction = m_jit.emitUnlinkedJe(); m_jit.link(isNotObject, m_jit.label()); // This handles host functions emitCall(i, ((type == OpConstruct) ? Machine::cti_op_construct_NotJSConstruct : Machine::cti_op_call_NotJSFunction)); emitGetCTIParam(CTI_ARGS_r, X86::edi); // edi := r X86Assembler::JmpSrc wasNotJSFunction = m_jit.emitUnlinkedJmp(); m_jit.link(isJSFunction, m_jit.label()); // This handles JSFunctions emitCall(i, ((type == OpConstruct) ? Machine::cti_op_construct_JSConstruct : Machine::cti_op_call_JSFunction)); // Check the ctiCode has been generated - if not, this is handled in a slow case. m_jit.testl_rr(X86::eax, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); m_jit.call_r(X86::eax); // In the interpreter the following actions are performed by op_ret: // Store the scope chain - returned by op_ret in %edx (see below) - to ExecState::m_scopeChain and CTI_ARGS_scopeChain on the stack. emitGetCTIParam(CTI_ARGS_exec, X86::ecx); emitPutCTIParam(X86::edx, CTI_ARGS_scopeChain); m_jit.movl_rm(X86::edx, OBJECT_OFFSET(ExecState, m_scopeChain), X86::ecx); // Restore ExecState::m_callFrame. m_jit.leal_mr(-(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize) * sizeof(Register), X86::edi, X86::edx); m_jit.movl_rm(X86::edx, OBJECT_OFFSET(ExecState, m_callFrame), X86::ecx); // Restore CTI_ARGS_codeBlock. emitPutCTIParam(m_codeBlock, CTI_ARGS_codeBlock); X86Assembler::JmpDst end = m_jit.label(); m_jit.link(wasNotJSFunction, end); if (type == OpCallEval) m_jit.link(wasEval, end); emitPutResult(dst); } void CTI::compileOpStrictEq(Instruction* instruction, unsigned i, CompileOpStrictEqType type) { bool negated = (type == OpNStrictEq); unsigned dst = instruction[i + 1].u.operand; unsigned src1 = instruction[i + 2].u.operand; unsigned src2 = instruction[i + 3].u.operand; emitGetArg(src1, X86::eax); emitGetArg(src2, X86::edx); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc firstNotImmediate = m_jit.emitUnlinkedJe(); m_jit.testl_i32r(JSImmediate::TagMask, X86::edx); X86Assembler::JmpSrc secondNotImmediate = m_jit.emitUnlinkedJe(); m_jit.cmpl_rr(X86::edx, X86::eax); if (negated) m_jit.setne_r(X86::eax); else m_jit.sete_r(X86::eax); m_jit.movzbl_rr(X86::eax, X86::eax); emitTagAsBoolImmediate(X86::eax); X86Assembler::JmpSrc bothWereImmediates = m_jit.emitUnlinkedJmp(); m_jit.link(firstNotImmediate, m_jit.label()); // check that edx is immediate but not the zero immediate m_jit.testl_i32r(JSImmediate::TagMask, X86::edx); m_jit.setz_r(X86::ecx); m_jit.movzbl_rr(X86::ecx, X86::ecx); // ecx is now 1 if edx was nonimmediate m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::zeroImmediate()), X86::edx); m_jit.sete_r(X86::edx); m_jit.movzbl_rr(X86::edx, X86::edx); // edx is now 1 if edx was the 0 immediate m_jit.orl_rr(X86::ecx, X86::edx); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJnz(), i)); m_jit.movl_i32r(reinterpret_cast(jsBoolean(negated)), X86::eax); X86Assembler::JmpSrc firstWasNotImmediate = m_jit.emitUnlinkedJmp(); m_jit.link(secondNotImmediate, m_jit.label()); // check that eax is not the zero immediate (we know it must be immediate) m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::zeroImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); m_jit.movl_i32r(reinterpret_cast(jsBoolean(negated)), X86::eax); m_jit.link(bothWereImmediates, m_jit.label()); m_jit.link(firstWasNotImmediate, m_jit.label()); emitPutResult(dst); } void CTI::emitSlowScriptCheck(unsigned opcodeIndex) { m_jit.subl_i8r(1, X86::esi); X86Assembler::JmpSrc skipTimeout = m_jit.emitUnlinkedJne(); emitCall(opcodeIndex, Machine::cti_timeout_check); emitGetCTIParam(CTI_ARGS_exec, X86::ecx); m_jit.movl_mr(OBJECT_OFFSET(ExecState, m_globalData), X86::ecx, X86::ecx); m_jit.movl_mr(OBJECT_OFFSET(JSGlobalData, machine), X86::ecx, X86::ecx); m_jit.movl_mr(OBJECT_OFFSET(Machine, m_ticksUntilNextTimeoutCheck), X86::ecx, X86::esi); m_jit.link(skipTimeout, m_jit.label()); } void CTI::privateCompileMainPass() { if (m_codeBlock->codeType == FunctionCode) { for (int i = -m_codeBlock->numVars; i < 0; i++) emitInitialiseRegister(i); } for (size_t i = 0; i < m_codeBlock->constantRegisters.size(); ++i) emitInitialiseRegister(i); Instruction* instruction = m_codeBlock->instructions.begin(); unsigned instructionCount = m_codeBlock->instructions.size(); unsigned structureIDInstructionIndex = 0; for (unsigned i = 0; i < instructionCount; ) { m_labels[i] = m_jit.label(); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(m_machine->getOpcodeID(instruction[i].u.opcode), ¤tOpcodeID); #endif ASSERT_WITH_MESSAGE(m_machine->isOpcode(instruction[i].u.opcode), "privateCompileMainPass gone bad @ %d", i); m_jit.emitRestoreArgumentReference(); switch (m_machine->getOpcodeID(instruction[i].u.opcode)) { case op_mov: { unsigned src = instruction[i + 2].u.operand; if (src < m_codeBlock->constantRegisters.size()) m_jit.movl_i32r(reinterpret_cast(m_codeBlock->constantRegisters[src].jsValue(m_exec)), X86::edx); else emitGetArg(src, X86::edx); emitPutResult(instruction[i + 1].u.operand, X86::edx); i += 3; break; } case op_add: { unsigned dst = instruction[i + 1].u.operand; unsigned src1 = instruction[i + 2].u.operand; unsigned src2 = instruction[i + 3].u.operand; if (src2 < m_codeBlock->constantRegisters.size()) { JSValue* value = m_codeBlock->constantRegisters[src2].jsValue(m_exec); if (JSImmediate::isNumber(value)) { emitGetArg(src1, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.addl_i32r(getDeTaggedConstantImmediate(value), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(dst); i += 4; break; } } else if (!(src1 < m_codeBlock->constantRegisters.size())) { emitGetArg(src1, X86::eax); emitGetArg(src2, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); emitFastArithDeTagImmediate(X86::eax); m_jit.addl_rr(X86::edx, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(dst); i += 4; break; } emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_add); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_end: { if (m_codeBlock->needsFullScopeChain) emitCall(i, Machine::cti_op_end); emitGetArg(instruction[i + 1].u.operand, X86::eax); #if ENABLE(SAMPLING_TOOL) m_jit.movl_i32m(-1, ¤tOpcodeID); #endif m_jit.pushl_m(-((m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize) - RegisterFile::CTIReturnEIP) * sizeof(Register), X86::edi); m_jit.ret(); i += 2; break; } case op_jmp: { unsigned target = instruction[i + 1].u.operand; m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 1 + target)); i += 2; break; } case op_pre_inc: { int srcDst = instruction[i + 1].u.operand; emitGetArg(srcDst, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(srcDst, X86::eax); i += 2; break; } case op_loop: { emitSlowScriptCheck(i); unsigned target = instruction[i + 1].u.operand; m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 1 + target)); i += 2; break; } case op_loop_if_less: { emitSlowScriptCheck(i); unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { emitGetArg(instruction[i + 1].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_i32r(reinterpret_cast(src2imm), X86::edx); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJl(), i + 3 + target)); } else { emitGetArg(instruction[i + 1].u.operand, X86::eax); emitGetArg(instruction[i + 2].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_rr(X86::edx, X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJl(), i + 3 + target)); } i += 4; break; } case op_loop_if_lesseq: { emitSlowScriptCheck(i); unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { emitGetArg(instruction[i + 1].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_i32r(reinterpret_cast(src2imm), X86::edx); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJle(), i + 3 + target)); } else { emitGetArg(instruction[i + 1].u.operand, X86::eax); emitGetArg(instruction[i + 2].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_rr(X86::edx, X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJle(), i + 3 + target)); } i += 4; break; } case op_new_object: { emitCall(i, Machine::cti_op_new_object); emitPutResult(instruction[i + 1].u.operand); i += 2; break; } case op_put_by_id: { // In order to be able to repatch both the StructureID, and the object offset, we store one pointer, // to just after the arguments have been loaded into registers 'hotPathBegin', and we generate code // such that the StructureID & offset are always at the same distance from this. emitGetArg(instruction[i + 1].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); ASSERT(m_codeBlock->structureIDInstructions[structureIDInstructionIndex].opcodeIndex == i); X86Assembler::JmpDst hotPathBegin = m_jit.label(); m_structureStubCompilationInfo[structureIDInstructionIndex].hotPathBegin = hotPathBegin; ++structureIDInstructionIndex; // Jump to a slow case if either the base object is an immediate, or if the StructureID does not match. emitJumpSlowCaseIfNotJSCell(X86::eax, i); // It is important that the following instruction plants a 32bit immediate, in order that it can be patched over. m_jit.cmpl_i32m(repatchGetByIdDefaultStructureID, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetPutByIdStructureID); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); // Plant a load from a bogus ofset in the object's property map; we will patch this later, if it is to be used. m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_rm(X86::edx, repatchGetByIdDefaultOffset, X86::eax); ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetPutByIdPropertyMapOffset); i += 8; break; } case op_get_by_id: { // As for put_by_id, get_by_id requires the offset of the StructureID and the offset of the access to be repatched. // Additionally, for get_by_id we need repatch the offset of the branch to the slow case (we repatch this to jump // to array-length / prototype access tranpolines, and finally we also the the property-map access offset as a label // to jump back to if one of these trampolies finds a match. emitGetArg(instruction[i + 2].u.operand, X86::eax); ASSERT(m_codeBlock->structureIDInstructions[structureIDInstructionIndex].opcodeIndex == i); X86Assembler::JmpDst hotPathBegin = m_jit.label(); m_structureStubCompilationInfo[structureIDInstructionIndex].hotPathBegin = hotPathBegin; ++structureIDInstructionIndex; emitJumpSlowCaseIfNotJSCell(X86::eax, i); m_jit.cmpl_i32m(repatchGetByIdDefaultStructureID, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdStructureID); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdBranchToSlowCase); m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_mr(repatchGetByIdDefaultOffset, X86::eax, X86::ecx); ASSERT(X86Assembler::getDifferenceBetweenLabels(hotPathBegin, m_jit.label()) == repatchOffsetGetByIdPropertyMapOffset); emitPutResult(instruction[i + 1].u.operand, X86::ecx); i += 8; break; } case op_instanceof: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); emitGetPutArg(instruction[i + 4].u.operand, 8, X86::ecx); emitCall(i, Machine::cti_op_instanceof); emitPutResult(instruction[i + 1].u.operand); i += 5; break; } case op_del_by_id: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 4); emitCall(i, Machine::cti_op_del_by_id); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_mul: { unsigned dst = instruction[i + 1].u.operand; unsigned src1 = instruction[i + 2].u.operand; unsigned src2 = instruction[i + 3].u.operand; if (src1 < m_codeBlock->constantRegisters.size() || src2 < m_codeBlock->constantRegisters.size()) { unsigned constant = src1; unsigned nonconstant = src2; if (!(src1 < m_codeBlock->constantRegisters.size())) { constant = src2; nonconstant = src1; } JSValue* value = m_codeBlock->constantRegisters[constant].jsValue(m_exec); if (JSImmediate::isNumber(value)) { emitGetArg(nonconstant, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitFastArithImmToInt(X86::eax); m_jit.imull_i32r( X86::eax, getDeTaggedConstantImmediate(value), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitFastArithPotentiallyReTagImmediate(X86::eax); emitPutResult(dst); i += 4; break; } } emitGetArg(src1, X86::eax); emitGetArg(src2, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); emitFastArithDeTagImmediate(X86::eax); emitFastArithImmToInt(X86::edx); m_jit.imull_rr(X86::edx, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitFastArithPotentiallyReTagImmediate(X86::eax); emitPutResult(dst); i += 4; break; } case op_new_func: { FuncDeclNode* func = (m_codeBlock->functions[instruction[i + 2].u.operand]).get(); emitPutArgConstant(reinterpret_cast(func), 0); emitCall(i, Machine::cti_op_new_func); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_call: { compileOpCall(instruction, i); i += 6; break; } case op_get_global_var: { JSVariableObject* globalObject = static_cast(instruction[i + 2].u.jsCell); m_jit.movl_i32r(reinterpret_cast(globalObject), X86::eax); emitGetVariableObjectRegister(X86::eax, instruction[i + 3].u.operand, X86::eax); emitPutResult(instruction[i + 1].u.operand, X86::eax); i += 4; break; } case op_put_global_var: { JSVariableObject* globalObject = static_cast(instruction[i + 1].u.jsCell); m_jit.movl_i32r(reinterpret_cast(globalObject), X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitPutVariableObjectRegister(X86::edx, X86::eax, instruction[i + 2].u.operand); i += 4; break; } case op_get_scoped_var: { int skip = instruction[i + 3].u.operand + m_codeBlock->needsFullScopeChain; emitGetCTIParam(CTI_ARGS_scopeChain, X86::eax); while (skip--) m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, next), X86::eax, X86::eax); m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, object), X86::eax, X86::eax); emitGetVariableObjectRegister(X86::eax, instruction[i + 2].u.operand, X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_put_scoped_var: { int skip = instruction[i + 2].u.operand + m_codeBlock->needsFullScopeChain; emitGetCTIParam(CTI_ARGS_scopeChain, X86::edx); emitGetArg(instruction[i + 3].u.operand, X86::eax); while (skip--) m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, next), X86::edx, X86::edx); m_jit.movl_mr(OBJECT_OFFSET(ScopeChainNode, object), X86::edx, X86::edx); emitPutVariableObjectRegister(X86::eax, X86::edx, instruction[i + 1].u.operand); i += 4; break; } case op_ret: { // Check for an activation - if there is one, jump to the hook below. m_jit.cmpl_i32m(0, -(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize - RegisterFile::OptionalCalleeActivation) * sizeof(Register), X86::edi); X86Assembler::JmpSrc activation = m_jit.emitUnlinkedJne(); X86Assembler::JmpDst activated = m_jit.label(); // Check for a profiler - if there is one, jump to the hook below. emitGetCTIParam(CTI_ARGS_profilerReference, X86::eax); m_jit.cmpl_i32m(0, X86::eax); X86Assembler::JmpSrc profile = m_jit.emitUnlinkedJne(); X86Assembler::JmpDst profiled = m_jit.label(); // We could JIT generate the deref, only calling out to C when the refcount hits zero. if (m_codeBlock->needsFullScopeChain) emitCall(i, Machine::cti_op_ret_scopeChain); // Return the result in %eax, and the caller scope chain in %edx (this is read from the callee call frame, // but is only assigned to ExecState::m_scopeChain if returning to a JSFunction). emitGetArg(instruction[i + 1].u.operand, X86::eax); m_jit.movl_mr(-(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize - RegisterFile::CallerScopeChain) * sizeof(Register), X86::edi, X86::edx); // Restore the machine return addess from the callframe, roll the callframe back to the caller callframe, // and preserve a copy of r on the stack at CTI_ARGS_r. m_jit.movl_mr(-(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize - RegisterFile::CTIReturnEIP) * sizeof(Register), X86::edi, X86::ecx); m_jit.movl_mr(-(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize - RegisterFile::CallerRegisters) * sizeof(Register), X86::edi, X86::edi); emitPutCTIParam(X86::edi, CTI_ARGS_r); m_jit.pushl_r(X86::ecx); m_jit.ret(); // Activation hook m_jit.link(activation, m_jit.label()); emitCall(i, Machine::cti_op_ret_activation); m_jit.link(m_jit.emitUnlinkedJmp(), activated); // Profiling hook m_jit.link(profile, m_jit.label()); emitCall(i, Machine::cti_op_ret_profiler); m_jit.link(m_jit.emitUnlinkedJmp(), profiled); i += 2; break; } case op_new_array: { m_jit.leal_mr(sizeof(Register) * instruction[i + 2].u.operand, X86::edi, X86::edx); emitPutArg(X86::edx, 0); emitPutArgConstant(instruction[i + 3].u.operand, 4); emitCall(i, Machine::cti_op_new_array); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_resolve: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitCall(i, Machine::cti_op_resolve); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_construct: { compileOpCall(instruction, i, OpConstruct); i += 6; break; } case op_construct_verify: { emitGetArg(instruction[i + 1].u.operand, X86::eax); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJne(); m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); X86Assembler::JmpSrc isObject = m_jit.emitUnlinkedJe(); m_jit.link(isImmediate, m_jit.label()); emitGetArg(instruction[i + 2].u.operand, X86::ecx); emitPutResult(instruction[i + 1].u.operand, X86::ecx); m_jit.link(isObject, m_jit.label()); i += 3; break; } case op_get_by_val: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::edx, i); emitFastArithImmToInt(X86::edx); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsArrayVptr), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); // This is an array; get the m_storage pointer into ecx, then check if the index is below the fast cutoff m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSArray, m_fastAccessCutoff), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJbe(), i)); // Get the value from the vector m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*), X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_resolve_func: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitCall(i, Machine::cti_op_resolve_func); emitPutResult(instruction[i + 1].u.operand); emitGetCTIParam(CTI_ARGS_2ndResult, X86::eax); emitPutResult(instruction[i + 2].u.operand); i += 4; break; } case op_sub: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); m_jit.subl_rr(X86::edx, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitFastArithReTagImmediate(X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_put_by_val: { emitGetArg(instruction[i + 1].u.operand, X86::eax); emitGetArg(instruction[i + 2].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::edx, i); emitFastArithImmToInt(X86::edx); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsArrayVptr), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); // This is an array; get the m_storage pointer into ecx, then check if the index is below the fast cutoff m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSArray, m_fastAccessCutoff), X86::eax); X86Assembler::JmpSrc inFastVector = m_jit.emitUnlinkedJa(); // No; oh well, check if the access if within the vector - if so, we may still be okay. m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(ArrayStorage, m_vectorLength), X86::ecx); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJbe(), i)); // This is a write to the slow part of the vector; first, we have to check if this would be the first write to this location. // FIXME: should be able to handle initial write to array; increment the the number of items in the array, and potentially update fast access cutoff. m_jit.cmpl_i8m(0, OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*)); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); // All good - put the value into the array. m_jit.link(inFastVector, m_jit.label()); emitGetArg(instruction[i + 3].u.operand, X86::eax); m_jit.movl_rm(X86::eax, OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*)); i += 4; break; } CTI_COMPILE_BINARY_OP(op_lesseq) case op_loop_if_true: { emitSlowScriptCheck(i); unsigned target = instruction[i + 2].u.operand; emitGetArg(instruction[i + 1].u.operand, X86::eax); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::zeroImmediate()), X86::eax); X86Assembler::JmpSrc isZero = m_jit.emitUnlinkedJe(); m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJne(), i + 2 + target)); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::trueImmediate()), X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::falseImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.link(isZero, m_jit.label()); i += 3; break; }; case op_resolve_base: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitCall(i, Machine::cti_op_resolve_base); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_negate: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_negate); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_resolve_skip: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitPutArgConstant(instruction[i + 3].u.operand + m_codeBlock->needsFullScopeChain, 4); emitCall(i, Machine::cti_op_resolve_skip); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_resolve_global: { // Fast case unsigned globalObject = reinterpret_cast(instruction[i + 2].u.jsCell); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); void* structureIDAddr = reinterpret_cast(instruction + i + 4); void* offsetAddr = reinterpret_cast(instruction + i + 5); // Check StructureID of global object m_jit.movl_i32r(globalObject, X86::eax); m_jit.movl_mr(structureIDAddr, X86::edx); m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(JSCell, m_structureID), X86::eax); X86Assembler::JmpSrc slowCase = m_jit.emitUnlinkedJne(); // StructureIDs don't match m_slowCases.append(SlowCaseEntry(slowCase, i)); // Load cached property m_jit.movl_mr(OBJECT_OFFSET(JSGlobalObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_mr(offsetAddr, X86::edx); m_jit.movl_mr(0, X86::eax, X86::edx, sizeof(JSValue*), X86::eax); emitPutResult(instruction[i + 1].u.operand); X86Assembler::JmpSrc end = m_jit.emitUnlinkedJmp(); // Slow case m_jit.link(slowCase, m_jit.label()); emitPutArgConstant(globalObject, 0); emitPutArgConstant(reinterpret_cast(ident), 4); emitPutArgConstant(reinterpret_cast(instruction + i), 8); emitCall(i, Machine::cti_op_resolve_global); emitPutResult(instruction[i + 1].u.operand); m_jit.link(end, m_jit.label()); i += 6; ++structureIDInstructionIndex; break; } CTI_COMPILE_BINARY_OP(op_div) case op_pre_dec: { int srcDst = instruction[i + 1].u.operand; emitGetArg(srcDst, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(srcDst, X86::eax); i += 2; break; } case op_jnless: { unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { emitGetArg(instruction[i + 1].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_i32r(reinterpret_cast(src2imm), X86::edx); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJge(), i + 3 + target)); } else { emitGetArg(instruction[i + 1].u.operand, X86::eax); emitGetArg(instruction[i + 2].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::edx, i); m_jit.cmpl_rr(X86::edx, X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJge(), i + 3 + target)); } i += 4; break; } case op_not: { emitGetArg(instruction[i + 2].u.operand, X86::eax); m_jit.xorl_i8r(JSImmediate::FullTagTypeBool, X86::eax); m_jit.testl_i32r(JSImmediate::FullTagTypeMask, X86::eax); // i8? m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.xorl_i8r((JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue), X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_jfalse: { unsigned target = instruction[i + 2].u.operand; emitGetArg(instruction[i + 1].u.operand, X86::eax); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::zeroImmediate()), X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); X86Assembler::JmpSrc isNonZero = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::falseImmediate()), X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::trueImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.link(isNonZero, m_jit.label()); i += 3; break; }; case op_post_inc: { int srcDst = instruction[i + 2].u.operand; emitGetArg(srcDst, X86::eax); m_jit.movl_rr(X86::eax, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::edx); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(srcDst, X86::edx); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_unexpected_load: { JSValue* v = m_codeBlock->unexpectedConstants[instruction[i + 2].u.operand]; m_jit.movl_i32r(reinterpret_cast(v), X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_jsr: { int retAddrDst = instruction[i + 1].u.operand; int target = instruction[i + 2].u.operand; m_jit.movl_i32m(0, sizeof(Register) * retAddrDst, X86::edi); X86Assembler::JmpDst addrPosition = m_jit.label(); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 2 + target)); X86Assembler::JmpDst sretTarget = m_jit.label(); m_jsrSites.append(JSRInfo(addrPosition, sretTarget)); i += 3; break; } case op_sret: { m_jit.jmp_m(sizeof(Register) * instruction[i + 1].u.operand, X86::edi); i += 2; break; } case op_eq: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); m_jit.cmpl_rr(X86::edx, X86::eax); m_jit.sete_r(X86::eax); m_jit.movzbl_rr(X86::eax, X86::eax); emitTagAsBoolImmediate(X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_lshift: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::ecx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::ecx, i); emitFastArithImmToInt(X86::eax); emitFastArithImmToInt(X86::ecx); m_jit.shll_CLr(X86::eax); emitFastArithIntToImmOrSlowCase(X86::eax, i); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_bitand: { unsigned src1 = instruction[i + 2].u.operand; unsigned src2 = instruction[i + 3].u.operand; unsigned dst = instruction[i + 1].u.operand; if (JSValue* value = getConstantImmediateNumericArg(src1)) { emitGetArg(src2, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.andl_i32r(reinterpret_cast(value), X86::eax); // FIXME: make it more obvious this is relying on the format of JSImmediate emitPutResult(dst); } else if (JSValue* value = getConstantImmediateNumericArg(src2)) { emitGetArg(src1, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.andl_i32r(reinterpret_cast(value), X86::eax); emitPutResult(dst); } else { emitGetArg(src1, X86::eax); emitGetArg(src2, X86::edx); m_jit.andl_rr(X86::edx, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitPutResult(dst); } i += 4; break; } case op_rshift: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::ecx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::ecx, i); emitFastArithImmToInt(X86::ecx); m_jit.sarl_CLr(X86::eax); emitFastArithPotentiallyReTagImmediate(X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_bitnot: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.xorl_i8r(~JSImmediate::TagBitTypeInteger, X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_resolve_with_base: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitCall(i, Machine::cti_op_resolve_with_base); emitPutResult(instruction[i + 1].u.operand); emitGetCTIParam(CTI_ARGS_2ndResult, X86::eax); emitPutResult(instruction[i + 2].u.operand); i += 4; break; } case op_new_func_exp: { FuncExprNode* func = (m_codeBlock->functionExpressions[instruction[i + 2].u.operand]).get(); emitPutArgConstant(reinterpret_cast(func), 0); emitCall(i, Machine::cti_op_new_func_exp); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_mod: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::ecx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); emitJumpSlowCaseIfNotImmNum(X86::ecx, i); emitFastArithDeTagImmediate(X86::eax); emitFastArithDeTagImmediate(X86::ecx); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJe(), i)); // This is checking if the last detag resulted in a value 0. m_jit.cdq(); m_jit.idivl_r(X86::ecx); emitFastArithReTagImmediate(X86::edx); m_jit.movl_rr(X86::edx, X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_jtrue: { unsigned target = instruction[i + 2].u.operand; emitGetArg(instruction[i + 1].u.operand, X86::eax); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::zeroImmediate()), X86::eax); X86Assembler::JmpSrc isZero = m_jit.emitUnlinkedJe(); m_jit.testl_i32r(JSImmediate::TagBitTypeInteger, X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJne(), i + 2 + target)); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::trueImmediate()), X86::eax); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJe(), i + 2 + target)); m_jit.cmpl_i32r(reinterpret_cast(JSImmediate::falseImmediate()), X86::eax); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJne(), i)); m_jit.link(isZero, m_jit.label()); i += 3; break; } CTI_COMPILE_BINARY_OP(op_less) CTI_COMPILE_BINARY_OP(op_neq) case op_post_dec: { int srcDst = instruction[i + 2].u.operand; emitGetArg(srcDst, X86::eax); m_jit.movl_rr(X86::eax, X86::edx); emitJumpSlowCaseIfNotImmNum(X86::eax, i); m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::edx); m_slowCases.append(SlowCaseEntry(m_jit.emitUnlinkedJo(), i)); emitPutResult(srcDst, X86::edx); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } CTI_COMPILE_BINARY_OP(op_urshift) case op_bitxor: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); m_jit.xorl_rr(X86::edx, X86::eax); emitFastArithReTagImmediate(X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_new_regexp: { RegExp* regExp = m_codeBlock->regexps[instruction[i + 2].u.operand].get(); emitPutArgConstant(reinterpret_cast(regExp), 0); emitCall(i, Machine::cti_op_new_regexp); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_bitor: { emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::edx); emitJumpSlowCaseIfNotImmNums(X86::eax, X86::edx, i); m_jit.orl_rr(X86::edx, X86::eax); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_call_eval: { compileOpCall(instruction, i, OpCallEval); i += 6; break; } case op_throw: { emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_throw); m_jit.addl_i8r(0x24, X86::esp); m_jit.popl_r(X86::edi); m_jit.popl_r(X86::esi); m_jit.ret(); i += 2; break; } case op_get_pnames: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_get_pnames); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_next_pname: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); unsigned target = instruction[i + 3].u.operand; emitCall(i, Machine::cti_op_next_pname); m_jit.testl_rr(X86::eax, X86::eax); X86Assembler::JmpSrc endOfIter = m_jit.emitUnlinkedJe(); emitPutResult(instruction[i + 1].u.operand); m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 3 + target)); m_jit.link(endOfIter, m_jit.label()); i += 4; break; } case op_push_scope: { emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_push_scope); i += 2; break; } case op_pop_scope: { emitCall(i, Machine::cti_op_pop_scope); i += 1; break; } CTI_COMPILE_UNARY_OP(op_typeof) CTI_COMPILE_UNARY_OP(op_is_undefined) CTI_COMPILE_UNARY_OP(op_is_boolean) CTI_COMPILE_UNARY_OP(op_is_number) CTI_COMPILE_UNARY_OP(op_is_string) CTI_COMPILE_UNARY_OP(op_is_object) CTI_COMPILE_UNARY_OP(op_is_function) case op_stricteq: { compileOpStrictEq(instruction, i, OpStrictEq); i += 4; break; } case op_nstricteq: { compileOpStrictEq(instruction, i, OpNStrictEq); i += 4; break; } case op_to_jsnumber: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitCall(i, Machine::cti_op_to_jsnumber); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_in: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_in); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_push_new_scope: { Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 0); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_push_new_scope); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_catch: { emitGetCTIParam(CTI_ARGS_r, X86::edi); // edi := r emitGetCTIParam(CTI_ARGS_exec, X86::ecx); m_jit.movl_mr(OBJECT_OFFSET(ExecState, m_exception), X86::ecx, X86::eax); m_jit.movl_i32m(0, OBJECT_OFFSET(ExecState, m_exception), X86::ecx); emitPutResult(instruction[i + 1].u.operand); i += 2; break; } case op_jmp_scopes: { unsigned count = instruction[i + 1].u.operand; emitPutArgConstant(count, 0); emitCall(i, Machine::cti_op_jmp_scopes); unsigned target = instruction[i + 2].u.operand; m_jmpTable.append(JmpTable(m_jit.emitUnlinkedJmp(), i + 2 + target)); i += 3; break; } case op_put_by_index: { emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); emitPutArgConstant(instruction[i + 2].u.operand, 4); emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); emitCall(i, Machine::cti_op_put_by_index); i += 4; break; } case op_switch_imm: { unsigned tableIndex = instruction[i + 1].u.operand; unsigned defaultOffset = instruction[i + 2].u.operand; unsigned scrutinee = instruction[i + 3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTables[tableIndex]; m_switches.append(SwitchRecord(jumpTable, i, defaultOffset, SwitchRecord::Immediate)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); emitGetPutArg(scrutinee, 0, X86::ecx); emitPutArgConstant(tableIndex, 4); emitCall(i, Machine::cti_op_switch_imm); m_jit.jmp_r(X86::eax); i += 4; break; } case op_switch_char: { unsigned tableIndex = instruction[i + 1].u.operand; unsigned defaultOffset = instruction[i + 2].u.operand; unsigned scrutinee = instruction[i + 3].u.operand; // create jump table for switch destinations, track this switch statement. SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTables[tableIndex]; m_switches.append(SwitchRecord(jumpTable, i, defaultOffset, SwitchRecord::Character)); jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); emitGetPutArg(scrutinee, 0, X86::ecx); emitPutArgConstant(tableIndex, 4); emitCall(i, Machine::cti_op_switch_char); m_jit.jmp_r(X86::eax); i += 4; break; } case op_switch_string: { unsigned tableIndex = instruction[i + 1].u.operand; unsigned defaultOffset = instruction[i + 2].u.operand; unsigned scrutinee = instruction[i + 3].u.operand; // create jump table for switch destinations, track this switch statement. StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTables[tableIndex]; m_switches.append(SwitchRecord(jumpTable, i, defaultOffset)); emitGetPutArg(scrutinee, 0, X86::ecx); emitPutArgConstant(tableIndex, 4); emitCall(i, Machine::cti_op_switch_string); m_jit.jmp_r(X86::eax); i += 4; break; } case op_del_by_val: { emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_del_by_val); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_put_getter: { emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 4); emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); emitCall(i, Machine::cti_op_put_getter); i += 4; break; } case op_put_setter: { emitGetPutArg(instruction[i + 1].u.operand, 0, X86::ecx); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 4); emitGetPutArg(instruction[i + 3].u.operand, 8, X86::ecx); emitCall(i, Machine::cti_op_put_setter); i += 4; break; } case op_new_error: { JSValue* message = m_codeBlock->unexpectedConstants[instruction[i + 3].u.operand]; emitPutArgConstant(instruction[i + 2].u.operand, 0); emitPutArgConstant(reinterpret_cast(message), 4); emitPutArgConstant(m_codeBlock->lineNumberForVPC(&instruction[i]), 8); emitCall(i, Machine::cti_op_new_error); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_debug: { emitPutArgConstant(instruction[i + 1].u.operand, 0); emitPutArgConstant(instruction[i + 2].u.operand, 4); emitPutArgConstant(instruction[i + 3].u.operand, 8); emitCall(i, Machine::cti_op_debug); i += 4; break; } case op_eq_null: { unsigned dst = instruction[i + 1].u.operand; unsigned src1 = instruction[i + 2].u.operand; emitGetArg(src1, X86::eax); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); m_jit.setnz_r(X86::eax); X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); m_jit.link(isImmediate, m_jit.label()); m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); m_jit.andl_rr(X86::eax, X86::ecx); m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); m_jit.sete_r(X86::eax); m_jit.link(wasNotImmediate, m_jit.label()); m_jit.movzbl_rr(X86::eax, X86::eax); emitTagAsBoolImmediate(X86::eax); emitPutResult(dst); i += 3; break; } case op_neq_null: { unsigned dst = instruction[i + 1].u.operand; unsigned src1 = instruction[i + 2].u.operand; emitGetArg(src1, X86::eax); m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc isImmediate = m_jit.emitUnlinkedJnz(); m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); m_jit.testl_i32m(MasqueradesAsUndefined, OBJECT_OFFSET(StructureID, m_typeInfo.m_flags), X86::ecx); m_jit.setz_r(X86::eax); X86Assembler::JmpSrc wasNotImmediate = m_jit.emitUnlinkedJmp(); m_jit.link(isImmediate, m_jit.label()); m_jit.movl_i32r(~JSImmediate::ExtendedTagBitUndefined, X86::ecx); m_jit.andl_rr(X86::eax, X86::ecx); m_jit.cmpl_i32r(JSImmediate::FullTagTypeNull, X86::ecx); m_jit.setne_r(X86::eax); m_jit.link(wasNotImmediate, m_jit.label()); m_jit.movzbl_rr(X86::eax, X86::eax); emitTagAsBoolImmediate(X86::eax); emitPutResult(dst); i += 3; break; } case op_initialise_locals: { i++; break; } case op_get_array_length: case op_get_by_id_chain: case op_get_by_id_generic: case op_get_by_id_proto: case op_get_by_id_self: case op_get_string_length: case op_put_by_id_generic: case op_put_by_id_replace: case op_put_by_id_transition: ASSERT_NOT_REACHED(); } } ASSERT(structureIDInstructionIndex == m_codeBlock->structureIDInstructions.size()); } void CTI::privateCompileLinkPass() { unsigned jmpTableCount = m_jmpTable.size(); for (unsigned i = 0; i < jmpTableCount; ++i) m_jit.link(m_jmpTable[i].from, m_labels[m_jmpTable[i].to]); m_jmpTable.clear(); } #define CTI_COMPILE_BINARY_OP_SLOW_CASE(name) \ case name: { \ m_jit.link(iter->from, m_jit.label()); \ emitGetPutArg(instruction[i + 2].u.operand, 0, X86::ecx); \ emitGetPutArg(instruction[i + 3].u.operand, 4, X86::ecx); \ emitCall(i, Machine::cti_##name); \ emitPutResult(instruction[i + 1].u.operand); \ i += 4; \ break; \ } void CTI::privateCompileSlowCases() { unsigned structureIDInstructionIndex = 0; Instruction* instruction = m_codeBlock->instructions.begin(); for (Vector::iterator iter = m_slowCases.begin(); iter != m_slowCases.end(); ++iter) { unsigned i = iter->to; m_jit.emitRestoreArgumentReference(); switch (m_machine->getOpcodeID(instruction[i].u.opcode)) { case op_add: { unsigned dst = instruction[i + 1].u.operand; unsigned src2 = instruction[i + 3].u.operand; if (src2 < m_codeBlock->constantRegisters.size()) { JSValue* value = m_codeBlock->constantRegisters[src2].jsValue(m_exec); if (JSImmediate::isNumber(value)) { X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.subl_i32r(getDeTaggedConstantImmediate(value), X86::eax); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitGetPutArg(src2, 4, X86::ecx); emitCall(i, Machine::cti_op_add); emitPutResult(dst); i += 4; break; } } ASSERT(!(static_cast(instruction[i + 2].u.operand) < m_codeBlock->constantRegisters.size())); X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.subl_rr(X86::edx, X86::eax); emitFastArithReTagImmediate(X86::eax); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_add); emitPutResult(dst); i += 4; break; } case op_get_by_val: { // The slow case that handles accesses to arrays (below) may jump back up to here. X86Assembler::JmpDst beginGetByValSlow = m_jit.label(); X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitFastArithIntToImmNoCheck(X86::edx); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_get_by_val); emitPutResult(instruction[i + 1].u.operand); m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i + 4]); // This is slow case that handles accesses to arrays above the fast cut-off. // First, check if this is an access to the vector m_jit.link((++iter)->from, m_jit.label()); m_jit.cmpl_rm(X86::edx, OBJECT_OFFSET(ArrayStorage, m_vectorLength), X86::ecx); m_jit.link(m_jit.emitUnlinkedJbe(), beginGetByValSlow); // okay, missed the fast region, but it is still in the vector. Get the value. m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_vector[0]), X86::ecx, X86::edx, sizeof(JSValue*), X86::ecx); // Check whether the value loaded is zero; if so we need to return undefined. m_jit.testl_rr(X86::ecx, X86::ecx); m_jit.link(m_jit.emitUnlinkedJe(), beginGetByValSlow); emitPutResult(instruction[i + 1].u.operand, X86::ecx); i += 4; break; } case op_sub: { X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.addl_rr(X86::edx, X86::eax); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_sub); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_rshift: { m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::ecx, 4); emitCall(i, Machine::cti_op_rshift); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_lshift: { X86Assembler::JmpSrc notImm1 = iter->from; X86Assembler::JmpSrc notImm2 = (++iter)->from; m_jit.link((++iter)->from, m_jit.label()); emitGetArg(instruction[i + 2].u.operand, X86::eax); emitGetArg(instruction[i + 3].u.operand, X86::ecx); m_jit.link(notImm1, m_jit.label()); m_jit.link(notImm2, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::ecx, 4); emitCall(i, Machine::cti_op_lshift); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_loop_if_less: { emitSlowScriptCheck(i); unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::edx, 0); emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_loop_if_less); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); } else { m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_loop_if_less); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); } i += 4; break; } case op_put_by_id: { m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 2].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 4); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 8); X86Assembler::JmpSrc call = emitCall(i, Machine::cti_op_put_by_id); // Track the location of the call; this will be used to recover repatch information. ASSERT(m_codeBlock->structureIDInstructions[structureIDInstructionIndex].opcodeIndex == i); m_structureStubCompilationInfo[structureIDInstructionIndex].callReturnLocation = call; ++structureIDInstructionIndex; i += 8; break; } case op_get_by_id: { // As for the hot path of get_by_id, above, we ensure that we can use an architecture specific offset // so that we only need track one pointer into the slow case code - we track a pointer to the location // of the call (which we can use to look up the repatch information), but should a array-length or // prototype access tramopile fail we want to bail out back to here. To do so we can subtract back // the distance from the call to the head of the slow case. m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); #ifndef NDEBUG X86Assembler::JmpDst coldPathBegin = m_jit.label(); #endif emitPutArg(X86::eax, 0); Identifier* ident = &(m_codeBlock->identifiers[instruction[i + 3].u.operand]); emitPutArgConstant(reinterpret_cast(ident), 4); X86Assembler::JmpSrc call = emitCall(i, Machine::cti_op_get_by_id); ASSERT(X86Assembler::getDifferenceBetweenLabels(coldPathBegin, call) == repatchOffsetGetByIdSlowCaseCall); emitPutResult(instruction[i + 1].u.operand); // Track the location of the call; this will be used to recover repatch information. ASSERT(m_codeBlock->structureIDInstructions[structureIDInstructionIndex].opcodeIndex == i); m_structureStubCompilationInfo[structureIDInstructionIndex].callReturnLocation = call; ++structureIDInstructionIndex; i += 8; break; } case op_resolve_global: { ++structureIDInstructionIndex; i += 6; break; } case op_loop_if_lesseq: { emitSlowScriptCheck(i); unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::edx, 0); emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_loop_if_lesseq); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); } else { m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_loop_if_lesseq); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 3 + target]); } i += 4; break; } case op_pre_inc: { unsigned srcDst = instruction[i + 1].u.operand; X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.subl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_pre_inc); emitPutResult(srcDst); i += 2; break; } case op_put_by_val: { // Normal slow cases - either is not an immediate imm, or is an array. X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitFastArithIntToImmNoCheck(X86::edx); m_jit.link(notImm, m_jit.label()); emitGetArg(instruction[i + 3].u.operand, X86::ecx); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitPutArg(X86::ecx, 8); emitCall(i, Machine::cti_op_put_by_val); m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i + 4]); // slow cases for immediate int accesses to arrays m_jit.link((++iter)->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitGetArg(instruction[i + 3].u.operand, X86::ecx); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitPutArg(X86::ecx, 8); emitCall(i, Machine::cti_op_put_by_val_array); i += 4; break; } case op_loop_if_true: { emitSlowScriptCheck(i); m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_jtrue); m_jit.testl_rr(X86::eax, X86::eax); unsigned target = instruction[i + 2].u.operand; m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 2 + target]); i += 3; break; } case op_pre_dec: { unsigned srcDst = instruction[i + 1].u.operand; X86Assembler::JmpSrc notImm = iter->from; m_jit.link((++iter)->from, m_jit.label()); m_jit.addl_i8r(getDeTaggedConstantImmediate(JSImmediate::oneImmediate()), X86::eax); m_jit.link(notImm, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_pre_dec); emitPutResult(srcDst); i += 2; break; } case op_jnless: { unsigned target = instruction[i + 3].u.operand; JSValue* src2imm = getConstantImmediateNumericArg(instruction[i + 2].u.operand); if (src2imm) { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::edx, 0); emitGetPutArg(instruction[i + 2].u.operand, 4, X86::ecx); emitCall(i, Machine::cti_op_jless); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 3 + target]); } else { m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_jless); m_jit.testl_rr(X86::eax, X86::eax); m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 3 + target]); } i += 4; break; } case op_not: { m_jit.link(iter->from, m_jit.label()); m_jit.xorl_i8r(JSImmediate::FullTagTypeBool, X86::eax); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_not); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_jfalse: { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_jtrue); m_jit.testl_rr(X86::eax, X86::eax); unsigned target = instruction[i + 2].u.operand; m_jit.link(m_jit.emitUnlinkedJe(), m_labels[i + 2 + target]); // inverted! i += 3; break; } case op_post_inc: { unsigned srcDst = instruction[i + 2].u.operand; m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_post_inc); emitPutResult(instruction[i + 1].u.operand); emitGetCTIParam(CTI_ARGS_2ndResult, X86::eax); emitPutResult(srcDst); i += 3; break; } case op_bitnot: { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_bitnot); emitPutResult(instruction[i + 1].u.operand); i += 3; break; } case op_bitand: { unsigned src1 = instruction[i + 2].u.operand; unsigned src2 = instruction[i + 3].u.operand; unsigned dst = instruction[i + 1].u.operand; if (getConstantImmediateNumericArg(src1)) { m_jit.link(iter->from, m_jit.label()); emitGetPutArg(src1, 0, X86::ecx); emitPutArg(X86::eax, 4); emitCall(i, Machine::cti_op_bitand); emitPutResult(dst); } else if (getConstantImmediateNumericArg(src2)) { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitGetPutArg(src2, 4, X86::ecx); emitCall(i, Machine::cti_op_bitand); emitPutResult(dst); } else { m_jit.link(iter->from, m_jit.label()); emitGetPutArg(src1, 0, X86::ecx); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_bitand); emitPutResult(dst); } i += 4; break; } case op_jtrue: { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_jtrue); m_jit.testl_rr(X86::eax, X86::eax); unsigned target = instruction[i + 2].u.operand; m_jit.link(m_jit.emitUnlinkedJne(), m_labels[i + 2 + target]); i += 3; break; } case op_post_dec: { unsigned srcDst = instruction[i + 2].u.operand; m_jit.link(iter->from, m_jit.label()); m_jit.link((++iter)->from, m_jit.label()); emitPutArg(X86::eax, 0); emitCall(i, Machine::cti_op_post_dec); emitPutResult(instruction[i + 1].u.operand); emitGetCTIParam(CTI_ARGS_2ndResult, X86::eax); emitPutResult(srcDst); i += 3; break; } case op_bitxor: { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_bitxor); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_bitor: { m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_bitor); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } case op_eq: m_jit.link(iter->from, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::edx, 4); emitCall(i, Machine::cti_op_eq); emitPutResult(instruction[i + 1].u.operand); i += 4; break; CTI_COMPILE_BINARY_OP_SLOW_CASE(op_stricteq); case op_mod: { X86Assembler::JmpSrc notImm1 = iter->from; X86Assembler::JmpSrc notImm2 = (++iter)->from; m_jit.link((++iter)->from, m_jit.label()); emitFastArithReTagImmediate(X86::eax); emitFastArithReTagImmediate(X86::ecx); m_jit.link(notImm1, m_jit.label()); m_jit.link(notImm2, m_jit.label()); emitPutArg(X86::eax, 0); emitPutArg(X86::ecx, 4); emitCall(i, Machine::cti_op_mod); emitPutResult(instruction[i + 1].u.operand); i += 4; break; } CTI_COMPILE_BINARY_OP_SLOW_CASE(op_mul); case op_call: case op_call_eval: case op_construct: { m_jit.link(iter->from, m_jit.label()); m_jit.emitRestoreArgumentReference(); // We jump to this slow case if the ctiCode for the codeBlock has not yet been generated; compile it now. emitCall(i, Machine::cti_vm_compile); m_jit.call_r(X86::eax); // Instead of checking for 0 we could initialize the CodeBlock::ctiCode to point to a trampoline that would trigger the translation. // In the interpreter the following actions are performed by op_ret: // Store the scope chain - returned by op_ret in %edx (see below) - to ExecState::m_scopeChain and CTI_ARGS_scopeChain on the stack. emitGetCTIParam(CTI_ARGS_exec, X86::ecx); emitPutCTIParam(X86::edx, CTI_ARGS_scopeChain); m_jit.movl_rm(X86::edx, OBJECT_OFFSET(ExecState, m_scopeChain), X86::ecx); // Restore ExecState::m_callFrame. m_jit.leal_mr(-(m_codeBlock->numLocals + RegisterFile::CallFrameHeaderSize) * sizeof(Register), X86::edi, X86::edx); m_jit.movl_rm(X86::edx, OBJECT_OFFSET(ExecState, m_callFrame), X86::ecx); // Restore CTI_ARGS_codeBlock. emitPutCTIParam(m_codeBlock, CTI_ARGS_codeBlock); emitPutResult(instruction[i + 1].u.operand); i += 6; break; } default: ASSERT_NOT_REACHED(); break; } m_jit.link(m_jit.emitUnlinkedJmp(), m_labels[i]); } ASSERT(structureIDInstructionIndex == m_codeBlock->structureIDInstructions.size()); } void CTI::privateCompile() { // Could use a popl_m, but would need to offset the following instruction if so. m_jit.popl_r(X86::ecx); emitGetCTIParam(CTI_ARGS_r, X86::edi); // edi := r emitPutToCallFrameHeader(X86::ecx, RegisterFile::CTIReturnEIP); // Lazy copy of the scopeChain X86Assembler::JmpSrc callToUpdateScopeChain; if ((m_codeBlock->codeType == FunctionCode) && m_codeBlock->needsFullScopeChain) { m_jit.emitRestoreArgumentReference(); callToUpdateScopeChain = m_jit.emitCall(); } privateCompileMainPass(); privateCompileLinkPass(); privateCompileSlowCases(); ASSERT(m_jmpTable.isEmpty()); void* code = m_jit.copy(); ASSERT(code); // Translate vPC offsets into addresses in JIT generated code, for switch tables. for (unsigned i = 0; i < m_switches.size(); ++i) { SwitchRecord record = m_switches[i]; unsigned opcodeIndex = record.m_opcodeIndex; if (record.m_type != SwitchRecord::String) { ASSERT(record.m_type == SwitchRecord::Immediate || record.m_type == SwitchRecord::Character); ASSERT(record.m_jumpTable.m_simpleJumpTable->branchOffsets.size() == record.m_jumpTable.m_simpleJumpTable->ctiOffsets.size()); record.m_jumpTable.m_simpleJumpTable->ctiDefault = m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + record.m_defaultOffset]); for (unsigned j = 0; j < record.m_jumpTable.m_simpleJumpTable->branchOffsets.size(); ++j) { unsigned offset = record.m_jumpTable.m_simpleJumpTable->branchOffsets[j]; record.m_jumpTable.m_simpleJumpTable->ctiOffsets[j] = offset ? m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + offset]) : record.m_jumpTable.m_simpleJumpTable->ctiDefault; } } else { ASSERT(record.m_type == SwitchRecord::String); record.m_jumpTable.m_stringJumpTable->ctiDefault = m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + record.m_defaultOffset]); StringJumpTable::StringOffsetTable::iterator end = record.m_jumpTable.m_stringJumpTable->offsetTable.end(); for (StringJumpTable::StringOffsetTable::iterator it = record.m_jumpTable.m_stringJumpTable->offsetTable.begin(); it != end; ++it) { unsigned offset = it->second.branchOffset; it->second.ctiOffset = offset ? m_jit.getRelocatedAddress(code, m_labels[opcodeIndex + 3 + offset]) : record.m_jumpTable.m_stringJumpTable->ctiDefault; } } } for (Vector::iterator iter = m_codeBlock->exceptionHandlers.begin(); iter != m_codeBlock->exceptionHandlers.end(); ++iter) iter->nativeCode = m_jit.getRelocatedAddress(code, m_labels[iter->target]); // FIXME: There doesn't seem to be a way to hint to a hashmap that it should make a certain capacity available; // could be faster if we could do something like this: // m_codeBlock->ctiReturnAddressVPCMap.grow(m_calls.size()); for (Vector::iterator iter = m_calls.begin(); iter != m_calls.end(); ++iter) { X86Assembler::link(code, iter->from, iter->to); m_codeBlock->ctiReturnAddressVPCMap.add(m_jit.getRelocatedAddress(code, iter->from), iter->opcodeIndex); } if ((m_codeBlock->codeType == FunctionCode) && m_codeBlock->needsFullScopeChain) X86Assembler::link(code, callToUpdateScopeChain, (void*)Machine::cti_vm_updateScopeChain); // Link absolute addresses for jsr for (Vector::iterator iter = m_jsrSites.begin(); iter != m_jsrSites.end(); ++iter) X86Assembler::linkAbsoluteAddress(code, iter->addrPosition, iter->target); for (unsigned i = 0; i < m_codeBlock->structureIDInstructions.size(); ++i) { StructureStubInfo& info = m_codeBlock->structureIDInstructions[i]; info.callReturnLocation = X86Assembler::getRelocatedAddress(code, m_structureStubCompilationInfo[i].callReturnLocation); info.hotPathBegin = X86Assembler::getRelocatedAddress(code, m_structureStubCompilationInfo[i].hotPathBegin); } m_codeBlock->ctiCode = code; } void CTI::privateCompileGetByIdSelf(StructureID* structureID, size_t cachedOffset, void* returnAddress) { // Check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Checks out okay! - getDirectOffset m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::eax, X86::eax); m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); X86Assembler::link(code, failureCases1, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases2, reinterpret_cast(Machine::cti_op_get_by_id_fail)); m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; ctiRepatchCallByReturnAddress(returnAddress, code); } void CTI::privateCompileGetByIdProto(StructureID* structureID, StructureID* prototypeStructureID, size_t cachedOffset, void* returnAddress) { #if USE(CTI_REPATCH_PIC) StructureStubInfo& info = m_codeBlock->getStubInfo(returnAddress); // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast(Machine::cti_op_get_by_id_fail)); // The prototype object definitely exists (if this stub exists the CodeBlock is referencing a StructureID that is // referencing the prototype object - let's speculatively load it's table nice and early!) JSObject* protoObject = static_cast(structureID->prototypeForLookup(m_exec)); PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; m_jit.movl_mr(static_cast(protoPropertyStorage), X86::edx); // check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Check the prototype object's StructureID had not changed. StructureID** protoStructureIDAddress = &(protoObject->m_structureID); m_jit.cmpl_i32m(reinterpret_cast(prototypeStructureID), static_cast(protoStructureIDAddress)); X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJne(); // Checks out okay! - getDirectOffset m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::ecx); X86Assembler::JmpSrc success = m_jit.emitUnlinkedJmp(); void* code = m_jit.copy(); ASSERT(code); // Use the repatch information to link the failure cases back to the original slow case routine. void* slowCaseBegin = reinterpret_cast(info.callReturnLocation) - repatchOffsetGetByIdSlowCaseCall; X86Assembler::link(code, failureCases1, slowCaseBegin); X86Assembler::link(code, failureCases2, slowCaseBegin); X86Assembler::link(code, failureCases3, slowCaseBegin); // On success return back to the hot patch code, at a point it will perform the store to dest for us. intptr_t successDest = (intptr_t)(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset; X86Assembler::link(code, success, reinterpret_cast(successDest)); // Track the stub we have created so that it will be deleted later. m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; // Finally repatch the jump to sow case back in the hot path to jump here instead. // FIXME: should revert this repatching, on failure. intptr_t jmpLocation = reinterpret_cast(info.hotPathBegin) + repatchOffsetGetByIdBranchToSlowCase; X86Assembler::repatchBranchOffset(jmpLocation, code); #else // The prototype object definitely exists (if this stub exists the CodeBlock is referencing a StructureID that is // referencing the prototype object - let's speculatively load it's table nice and early!) JSObject* protoObject = static_cast(structureID->prototypeForLookup(m_exec)); PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; m_jit.movl_mr(static_cast(protoPropertyStorage), X86::edx); // check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Check the prototype object's StructureID had not changed. StructureID** protoStructureIDAddress = &(protoObject->m_structureID); m_jit.cmpl_i32m(reinterpret_cast(prototypeStructureID), static_cast(protoStructureIDAddress)); X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJne(); // Checks out okay! - getDirectOffset m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::eax); m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); X86Assembler::link(code, failureCases1, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases2, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases3, reinterpret_cast(Machine::cti_op_get_by_id_fail)); m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; ctiRepatchCallByReturnAddress(returnAddress, code); #endif } void CTI::privateCompileGetByIdChain(StructureID* structureID, StructureIDChain* chain, size_t count, size_t cachedOffset, void* returnAddress) { ASSERT(count); Vector bucketsOfFail; // Check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); bucketsOfFail.append(m_jit.emitUnlinkedJne()); m_jit.cmpl_i32m(reinterpret_cast(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); bucketsOfFail.append(m_jit.emitUnlinkedJne()); StructureID* currStructureID = structureID; RefPtr* chainEntries = chain->head(); JSObject* protoObject = 0; for (unsigned i = 0; i(currStructureID->prototypeForLookup(m_exec)); currStructureID = chainEntries[i].get(); // Check the prototype object's StructureID had not changed. StructureID** protoStructureIDAddress = &(protoObject->m_structureID); m_jit.cmpl_i32m(reinterpret_cast(currStructureID), static_cast(protoStructureIDAddress)); bucketsOfFail.append(m_jit.emitUnlinkedJne()); } ASSERT(protoObject); PropertyStorage* protoPropertyStorage = &protoObject->m_propertyStorage; m_jit.movl_mr(static_cast(protoPropertyStorage), X86::edx); m_jit.movl_mr(cachedOffset * sizeof(JSValue*), X86::edx, X86::eax); m_jit.ret(); bucketsOfFail.append(m_jit.emitUnlinkedJmp()); void* code = m_jit.copy(); ASSERT(code); for (unsigned i = 0; i < bucketsOfFail.size(); ++i) X86Assembler::link(code, bucketsOfFail[i], reinterpret_cast(Machine::cti_op_get_by_id_fail)); m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; ctiRepatchCallByReturnAddress(returnAddress, code); } void CTI::privateCompilePutByIdReplace(StructureID* structureID, size_t cachedOffset, void* returnAddress) { // check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(structureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // checks out okay! - putDirectOffset m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_rm(X86::edx, cachedOffset * sizeof(JSValue*), X86::eax); m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); X86Assembler::link(code, failureCases1, reinterpret_cast(Machine::cti_op_put_by_id_fail)); X86Assembler::link(code, failureCases2, reinterpret_cast(Machine::cti_op_put_by_id_fail)); m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; ctiRepatchCallByReturnAddress(returnAddress, code); } extern "C" { static JSValue* SFX_CALL transitionObject(StructureID* newStructureID, size_t cachedOffset, JSObject* baseObject, JSValue* value) { StructureID* oldStructureID = newStructureID->previousID(); baseObject->transitionTo(newStructureID); if (oldStructureID->propertyMap().storageSize() == JSObject::inlineStorageCapacity) baseObject->allocatePropertyStorage(oldStructureID->propertyMap().storageSize(), oldStructureID->propertyMap().size()); baseObject->putDirectOffset(cachedOffset, value); return baseObject; } } static inline bool transitionWillNeedStorageRealloc(StructureID* oldStructureID, StructureID* newStructureID) { if (oldStructureID->propertyMap().storageSize() == JSObject::inlineStorageCapacity) return true; if (oldStructureID->propertyMap().storageSize() < JSObject::inlineStorageCapacity) return false; if (oldStructureID->propertyMap().size() != newStructureID->propertyMap().size()) return true; return false; } void CTI::privateCompilePutByIdTransition(StructureID* oldStructureID, StructureID* newStructureID, size_t cachedOffset, StructureIDChain* sIDC, void* returnAddress) { Vector failureCases; // check eax is an object of the right StructureID. m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); failureCases.append(m_jit.emitUnlinkedJne()); m_jit.cmpl_i32m(reinterpret_cast(oldStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); failureCases.append(m_jit.emitUnlinkedJne()); Vector successCases; // ecx = baseObject m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::eax, X86::ecx); // proto(ecx) = baseObject->structureID()->prototype() m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); failureCases.append(m_jit.emitUnlinkedJne()); m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_prototype), X86::ecx, X86::ecx); // ecx = baseObject->m_structureID for (RefPtr* it = sIDC->head(); *it; ++it) { // null check the prototype m_jit.cmpl_i32r(reinterpret_cast (jsNull()), X86::ecx); successCases.append(m_jit.emitUnlinkedJe()); // Check the structure id m_jit.cmpl_i32m(reinterpret_cast(it->get()), OBJECT_OFFSET(JSCell, m_structureID), X86::ecx); failureCases.append(m_jit.emitUnlinkedJne()); m_jit.movl_mr(OBJECT_OFFSET(JSCell, m_structureID), X86::ecx, X86::ecx); m_jit.cmpl_i32m(ObjectType, OBJECT_OFFSET(StructureID, m_typeInfo) + OBJECT_OFFSET(TypeInfo, m_type), X86::ecx); failureCases.append(m_jit.emitUnlinkedJne()); m_jit.movl_mr(OBJECT_OFFSET(StructureID, m_prototype), X86::ecx, X86::ecx); } failureCases.append(m_jit.emitUnlinkedJne()); for (unsigned i = 0; i < successCases.size(); ++i) m_jit.link(successCases[i], m_jit.label()); X86Assembler::JmpSrc callTarget; // Fast case, don't need to do any heavy lifting, so don't bother making a call. if (!transitionWillNeedStorageRealloc(oldStructureID, newStructureID)) { // Assumes m_refCount can be decremented easily, refcount decrement is safe as // codeblock should ensure oldStructureID->m_refCount > 0 m_jit.subl_i8m(1, reinterpret_cast(oldStructureID)); m_jit.addl_i8m(1, reinterpret_cast(newStructureID)); m_jit.movl_i32m(reinterpret_cast(newStructureID), OBJECT_OFFSET(JSCell, m_structureID), X86::eax); // write the value m_jit.movl_mr(OBJECT_OFFSET(JSObject, m_propertyStorage), X86::eax, X86::eax); m_jit.movl_rm(X86::edx, cachedOffset * sizeof(JSValue*), X86::eax); } else { // Slow case transition -- we're going to need to quite a bit of work, // so just make a call m_jit.pushl_r(X86::edx); m_jit.pushl_r(X86::eax); m_jit.movl_i32r(cachedOffset, X86::eax); m_jit.pushl_r(X86::eax); m_jit.movl_i32r(reinterpret_cast(newStructureID), X86::eax); m_jit.pushl_r(X86::eax); callTarget = m_jit.emitCall(); m_jit.addl_i32r(4 * sizeof(void*), X86::esp); } m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); for (unsigned i = 0; i < failureCases.size(); ++i) X86Assembler::link(code, failureCases[i], reinterpret_cast(Machine::cti_op_put_by_id_fail)); if (transitionWillNeedStorageRealloc(oldStructureID, newStructureID)) X86Assembler::link(code, callTarget, reinterpret_cast(transitionObject)); m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; ctiRepatchCallByReturnAddress(returnAddress, code); } void* CTI::privateCompileArrayLengthTrampoline() { // Check eax is an array m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsArrayVptr), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Checks out okay! - get the length from the storage m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::eax); m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_length), X86::eax, X86::eax); m_jit.addl_rr(X86::eax, X86::eax); X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJo(); m_jit.addl_i8r(1, X86::eax); m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); X86Assembler::link(code, failureCases1, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases2, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases3, reinterpret_cast(Machine::cti_op_get_by_id_fail)); return code; } void* CTI::privateCompileStringLengthTrampoline() { // Check eax is a string m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsStringVptr), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Checks out okay! - get the length from the Ustring. m_jit.movl_mr(OBJECT_OFFSET(JSString, m_value) + OBJECT_OFFSET(UString, m_rep), X86::eax, X86::eax); m_jit.movl_mr(OBJECT_OFFSET(UString::Rep, len), X86::eax, X86::eax); m_jit.addl_rr(X86::eax, X86::eax); X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJo(); m_jit.addl_i8r(1, X86::eax); m_jit.ret(); void* code = m_jit.copy(); ASSERT(code); X86Assembler::link(code, failureCases1, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases2, reinterpret_cast(Machine::cti_op_get_by_id_fail)); X86Assembler::link(code, failureCases3, reinterpret_cast(Machine::cti_op_get_by_id_fail)); return code; } void CTI::patchGetByIdSelf(CodeBlock* codeBlock, StructureID* structureID, size_t cachedOffset, void* returnAddress) { StructureStubInfo& info = codeBlock->getStubInfo(returnAddress); // We don't want to repatch more than once - in future go to cti_op_get_by_id_generic. // Should probably go to Machine::cti_op_get_by_id_fail, but that doesn't do anything interesting right now. ctiRepatchCallByReturnAddress(returnAddress, (void*)(Machine::cti_op_get_by_id_generic)); // Repatch the offset into the propoerty map to load from, then repatch the StructureID to look for. X86Assembler::repatchDisplacement(reinterpret_cast(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset, cachedOffset * sizeof(JSValue*)); X86Assembler::repatchImmediate(reinterpret_cast(info.hotPathBegin) + repatchOffsetGetByIdStructureID, reinterpret_cast(structureID)); } void CTI::patchPutByIdReplace(CodeBlock* codeBlock, StructureID* structureID, size_t cachedOffset, void* returnAddress) { StructureStubInfo& info = codeBlock->getStubInfo(returnAddress); // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. // Should probably go to Machine::cti_op_put_by_id_fail, but that doesn't do anything interesting right now. ctiRepatchCallByReturnAddress(returnAddress, (void*)(Machine::cti_op_put_by_id_generic)); // Repatch the offset into the propoerty map to load from, then repatch the StructureID to look for. X86Assembler::repatchDisplacement(reinterpret_cast(info.hotPathBegin) + repatchOffsetPutByIdPropertyMapOffset, cachedOffset * sizeof(JSValue*)); X86Assembler::repatchImmediate(reinterpret_cast(info.hotPathBegin) + repatchOffsetPutByIdStructureID, reinterpret_cast(structureID)); } void CTI::privateCompilePatchGetArrayLength(void* returnAddress) { StructureStubInfo& info = m_codeBlock->getStubInfo(returnAddress); // We don't want to repatch more than once - in future go to cti_op_put_by_id_generic. ctiRepatchCallByReturnAddress(returnAddress, reinterpret_cast(Machine::cti_op_get_by_id_fail)); // Check eax is an array m_jit.testl_i32r(JSImmediate::TagMask, X86::eax); X86Assembler::JmpSrc failureCases1 = m_jit.emitUnlinkedJne(); m_jit.cmpl_i32m(reinterpret_cast(m_machine->m_jsArrayVptr), X86::eax); X86Assembler::JmpSrc failureCases2 = m_jit.emitUnlinkedJne(); // Checks out okay! - get the length from the storage m_jit.movl_mr(OBJECT_OFFSET(JSArray, m_storage), X86::eax, X86::ecx); m_jit.movl_mr(OBJECT_OFFSET(ArrayStorage, m_length), X86::ecx, X86::ecx); m_jit.addl_rr(X86::ecx, X86::ecx); X86Assembler::JmpSrc failureCases3 = m_jit.emitUnlinkedJo(); m_jit.addl_i8r(1, X86::ecx); X86Assembler::JmpSrc success = m_jit.emitUnlinkedJmp(); void* code = m_jit.copy(); ASSERT(code); // Use the repatch information to link the failure cases back to the original slow case routine. void* slowCaseBegin = reinterpret_cast(info.callReturnLocation) - repatchOffsetGetByIdSlowCaseCall; X86Assembler::link(code, failureCases1, slowCaseBegin); X86Assembler::link(code, failureCases2, slowCaseBegin); X86Assembler::link(code, failureCases3, slowCaseBegin); // On success return back to the hot patch code, at a point it will perform the store to dest for us. intptr_t successDest = (intptr_t)(info.hotPathBegin) + repatchOffsetGetByIdPropertyMapOffset; X86Assembler::link(code, success, reinterpret_cast(successDest)); // Track the stub we have created so that it will be deleted later. m_codeBlock->getStubInfo(returnAddress).stubRoutine = code; // Finally repatch the jump to sow case back in the hot path to jump here instead. // FIXME: should revert this repatching, on failure. intptr_t jmpLocation = reinterpret_cast(info.hotPathBegin) + repatchOffsetGetByIdBranchToSlowCase; X86Assembler::repatchBranchOffset(jmpLocation, code); } void CTI::emitGetVariableObjectRegister(X86Assembler::RegisterID variableObject, int index, X86Assembler::RegisterID dst) { m_jit.movl_mr(JSVariableObject::offsetOf_d(), variableObject, dst); m_jit.movl_mr(JSVariableObject::offsetOf_Data_registers(), dst, dst); m_jit.movl_mr(index * sizeof(Register), dst, dst); } void CTI::emitPutVariableObjectRegister(X86Assembler::RegisterID src, X86Assembler::RegisterID variableObject, int index) { m_jit.movl_mr(JSVariableObject::offsetOf_d(), variableObject, variableObject); m_jit.movl_mr(JSVariableObject::offsetOf_Data_registers(), variableObject, variableObject); m_jit.movl_rm(src, index * sizeof(Register), variableObject); } #if ENABLE(WREC) void* CTI::compileRegExp(ExecState* exec, const UString& pattern, unsigned* numSubpatterns_ptr, const char** error_ptr, bool ignoreCase, bool multiline) { // TODO: better error messages if (pattern.size() > MaxPatternSize) { *error_ptr = "regular expression too large"; return 0; } X86Assembler jit(exec->machine()->jitCodeBuffer()); WRECParser parser(pattern, ignoreCase, multiline, jit); jit.emitConvertToFastCall(); // (0) Setup: // Preserve regs & initialize outputRegister. jit.pushl_r(WRECGenerator::outputRegister); jit.pushl_r(WRECGenerator::currentValueRegister); // push pos onto the stack, both to preserve and as a parameter available to parseDisjunction jit.pushl_r(WRECGenerator::currentPositionRegister); // load output pointer jit.movl_mr(16 #if COMPILER(MSVC) + 3 * sizeof(void*) #endif , X86::esp, WRECGenerator::outputRegister); // restart point on match fail. WRECGenerator::JmpDst nextLabel = jit.label(); // (1) Parse Disjunction: // Parsing the disjunction should fully consume the pattern. JmpSrcVector failures; parser.parseDisjunction(failures); if (parser.isEndOfPattern()) { parser.m_err = WRECParser::Error_malformedPattern; } if (parser.m_err) { // TODO: better error messages *error_ptr = "TODO: better error messages"; return 0; } // (2) Success: // Set return value & pop registers from the stack. jit.testl_rr(WRECGenerator::outputRegister, WRECGenerator::outputRegister); WRECGenerator::JmpSrc noOutput = jit.emitUnlinkedJe(); jit.movl_rm(WRECGenerator::currentPositionRegister, 4, WRECGenerator::outputRegister); jit.popl_r(X86::eax); jit.movl_rm(X86::eax, WRECGenerator::outputRegister); jit.popl_r(WRECGenerator::currentValueRegister); jit.popl_r(WRECGenerator::outputRegister); jit.ret(); jit.link(noOutput, jit.label()); jit.popl_r(X86::eax); jit.movl_rm(X86::eax, WRECGenerator::outputRegister); jit.popl_r(WRECGenerator::currentValueRegister); jit.popl_r(WRECGenerator::outputRegister); jit.ret(); // (3) Failure: // All fails link to here. Progress the start point & if it is within scope, loop. // Otherwise, return fail value. WRECGenerator::JmpDst here = jit.label(); for (unsigned i = 0; i < failures.size(); ++i) jit.link(failures[i], here); failures.clear(); jit.movl_mr(X86::esp, WRECGenerator::currentPositionRegister); jit.addl_i8r(1, WRECGenerator::currentPositionRegister); jit.movl_rm(WRECGenerator::currentPositionRegister, X86::esp); jit.cmpl_rr(WRECGenerator::lengthRegister, WRECGenerator::currentPositionRegister); jit.link(jit.emitUnlinkedJle(), nextLabel); jit.addl_i8r(4, X86::esp); jit.movl_i32r(-1, X86::eax); jit.popl_r(WRECGenerator::currentValueRegister); jit.popl_r(WRECGenerator::outputRegister); jit.ret(); *numSubpatterns_ptr = parser.m_numSubpatterns; void* code = jit.copy(); ASSERT(code); return code; } #endif // ENABLE(WREC) } // namespace JSC #endif // ENABLE(CTI)