2010-12-07 Kenneth Russell <kbr@google.com>
[WebKit.git] / WebCore / webaudio / RealtimeAnalyser.cpp
1 /*
2  * Copyright (C) 2010, Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1.  Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2.  Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16  * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
17  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
22  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24
25 #include "config.h"
26
27 #if ENABLE(WEB_AUDIO)
28
29 #include "RealtimeAnalyser.h"
30
31 #include "AudioBus.h"
32 #include "AudioUtilities.h"
33 #include "FFTFrame.h"
34
35 #if ENABLE(3D_CANVAS)
36 #include "Float32Array.h"
37 #include "Uint8Array.h"
38 #endif
39
40 #include <algorithm>
41 #include <limits.h>
42 #include <wtf/Complex.h>
43 #include <wtf/MathExtras.h>
44 #include <wtf/Threading.h>
45
46 using namespace std;
47
48 namespace WebCore {
49
50 const double RealtimeAnalyser::DefaultSmoothingTimeConstant  = 0.8;
51 const double RealtimeAnalyser::DefaultMinDecibels = -100.0;
52 const double RealtimeAnalyser::DefaultMaxDecibels = -30.0;
53
54 const unsigned RealtimeAnalyser::DefaultFFTSize = 2048;
55 const unsigned RealtimeAnalyser::MaxFFTSize = 2048;
56 const unsigned RealtimeAnalyser::InputBufferSize = RealtimeAnalyser::MaxFFTSize * 2;
57
58 RealtimeAnalyser::RealtimeAnalyser()
59     : m_inputBuffer(InputBufferSize)
60     , m_writeIndex(0)
61     , m_fftSize(DefaultFFTSize)
62     , m_magnitudeBuffer(DefaultFFTSize / 2)
63     , m_smoothingTimeConstant(DefaultSmoothingTimeConstant)
64     , m_minDecibels(DefaultMinDecibels)
65     , m_maxDecibels(DefaultMaxDecibels)
66 {
67     m_analysisFrame = adoptPtr(new FFTFrame(DefaultFFTSize));
68 }
69
70 RealtimeAnalyser::~RealtimeAnalyser()
71 {
72 }
73
74 void RealtimeAnalyser::reset()
75 {
76     m_writeIndex = 0;
77     m_inputBuffer.zero();
78     m_magnitudeBuffer.zero();
79 }
80
81 void RealtimeAnalyser::setFftSize(size_t size)
82 {
83     ASSERT(isMainThread());
84
85     // Only allow powers of two.
86     unsigned log2size = static_cast<unsigned>(log2(size));
87     bool isPOT(1UL << log2size == size);
88     
89     if (!isPOT || size > MaxFFTSize) {
90         // FIXME: It would be good to also set an exception.
91         return;
92     }
93
94     if (m_fftSize != size) {
95         m_analysisFrame = adoptPtr(new FFTFrame(m_fftSize));
96         m_magnitudeBuffer.resize(size);
97         m_fftSize = size;
98     }
99 }
100
101 void RealtimeAnalyser::writeInput(AudioBus* bus, size_t framesToProcess)
102 {
103     bool isBusGood = bus && bus->numberOfChannels() > 0 && bus->channel(0)->length() >= framesToProcess;
104     ASSERT(isBusGood);
105     if (!isBusGood)
106         return;
107         
108     // FIXME : allow to work with non-FFTSize divisible chunking
109     bool isDestinationGood = m_writeIndex < m_inputBuffer.size() && m_writeIndex + framesToProcess <= m_inputBuffer.size();
110     ASSERT(isDestinationGood);
111     if (!isDestinationGood)
112         return;    
113     
114     // Perform real-time analysis
115     // FIXME : for now just use left channel (must mix if stereo source)
116     float* source = bus->channel(0)->data();
117
118     // The source has already been sanity checked with isBusGood above.
119     
120     memcpy(m_inputBuffer.data() + m_writeIndex, source, sizeof(float) * framesToProcess);
121
122     m_writeIndex += framesToProcess;
123     if (m_writeIndex >= InputBufferSize)
124         m_writeIndex = 0;
125 }
126
127 namespace {
128
129 void applyWindow(float* p, size_t n)
130 {
131     ASSERT(isMainThread());
132     
133     // Blackman window
134     double alpha = 0.16;
135     double a0 = 0.5 * (1.0 - alpha);
136     double a1 = 0.5;
137     double a2 = 0.5 * alpha;
138     
139     for (unsigned i = 0; i < n; ++i) {
140         double x = static_cast<double>(i) / static_cast<double>(n);
141         double window = a0 - a1 * cos(2.0 * piDouble * x) + a2 * cos(4.0 * piDouble * x);
142         p[i] *= float(window);
143     }
144 }
145
146 } // namespace
147
148 void RealtimeAnalyser::doFFTAnalysis()
149 {    
150     ASSERT(isMainThread());
151
152     // Unroll the input buffer into a temporary buffer, where we'll apply an analysis window followed by an FFT.
153     size_t fftSize = this->fftSize();
154     
155     AudioFloatArray temporaryBuffer(fftSize);
156     float* inputBuffer = m_inputBuffer.data();
157     float* tempP = temporaryBuffer.data();
158
159     // Take the previous fftSize values from the input buffer and copy into the temporary buffer.
160     // FIXME : optimize with memcpy().
161     unsigned writeIndex = m_writeIndex;
162     for (unsigned i = 0; i < fftSize; ++i)
163         tempP[i] = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize];
164     
165     // Window the input samples.
166     applyWindow(tempP, fftSize);
167     
168     // Do the analysis.
169     m_analysisFrame->doFFT(tempP);
170
171     size_t n = DefaultFFTSize / 2;
172
173     float* realP = m_analysisFrame->realData();
174     float* imagP = m_analysisFrame->imagData();
175
176     // Blow away the packed nyquist component.
177     imagP[0] = 0.0f;
178     
179     // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor).
180     const double MagnitudeScale = 1.0 / DefaultFFTSize;
181
182     // A value of 0 does no averaging with the previous result.  Larger values produce slower, but smoother changes.
183     double k = m_smoothingTimeConstant;
184     k = max(0.0, k);
185     k = min(1.0, k);    
186     
187     // Convert the analysis data from complex to magnitude and average with the previous result.
188     float* destination = magnitudeBuffer().data();
189     for (unsigned i = 0; i < n; ++i) {
190         Complex c(realP[i], imagP[i]);
191         double scalarMagnitude = abs(c) * MagnitudeScale;        
192         destination[i] = float(k * destination[i] + (1.0 - k) * scalarMagnitude);
193     }
194 }
195
196 #if ENABLE(3D_CANVAS)
197
198 void RealtimeAnalyser::getFloatFrequencyData(Float32Array* destinationArray)
199 {
200     ASSERT(isMainThread());
201
202     if (!destinationArray)
203         return;
204         
205     doFFTAnalysis();
206     
207     // Convert from linear magnitude to floating-point decibels.
208     const double MinDecibels = m_minDecibels;
209     unsigned sourceLength = magnitudeBuffer().size();
210     size_t len = min(sourceLength, destinationArray->length());
211     if (len > 0) {
212         const float* source = magnitudeBuffer().data();
213         float* destination = destinationArray->data();
214         
215         for (unsigned i = 0; i < len; ++i) {
216             float linearValue = source[i];
217             double dbMag = !linearValue ? MinDecibels : AudioUtilities::linearToDecibels(linearValue);
218             destination[i] = float(dbMag);
219         }
220     }
221 }
222
223 void RealtimeAnalyser::getByteFrequencyData(Uint8Array* destinationArray)
224 {
225     ASSERT(isMainThread());
226
227     if (!destinationArray)
228         return;
229         
230     doFFTAnalysis();
231     
232     // Convert from linear magnitude to unsigned-byte decibels.
233     unsigned sourceLength = magnitudeBuffer().size();
234     size_t len = min(sourceLength, destinationArray->length());
235     if (len > 0) {
236         const double RangeScaleFactor = m_maxDecibels == m_minDecibels ? 1.0 : 1.0 / (m_maxDecibels - m_minDecibels);
237
238         const float* source = magnitudeBuffer().data();
239         unsigned char* destination = destinationArray->data();        
240         
241         for (unsigned i = 0; i < len; ++i) {
242             float linearValue = source[i];
243             double dbMag = !linearValue ? m_minDecibels : AudioUtilities::linearToDecibels(linearValue);
244             
245             // The range m_minDecibels to m_maxDecibels will be scaled to byte values from 0 to UCHAR_MAX.
246             double scaledValue = UCHAR_MAX * (dbMag - m_minDecibels) * RangeScaleFactor;
247
248             // Clip to valid range.
249             if (scaledValue < 0.0)
250                 scaledValue = 0.0;
251             if (scaledValue > UCHAR_MAX)
252                 scaledValue = UCHAR_MAX;
253             
254             destination[i] = static_cast<unsigned char>(scaledValue);
255         }
256     }
257 }
258
259 void RealtimeAnalyser::getByteTimeDomainData(Uint8Array* destinationArray)
260 {
261     ASSERT(isMainThread());
262
263     if (!destinationArray)
264         return;
265         
266     unsigned fftSize = this->fftSize();
267     size_t len = min(fftSize, destinationArray->length());
268     if (len > 0) {
269         bool isInputBufferGood = m_inputBuffer.size() == InputBufferSize && m_inputBuffer.size() > fftSize;
270         ASSERT(isInputBufferGood);
271         if (!isInputBufferGood)
272             return;
273
274         float* inputBuffer = m_inputBuffer.data();        
275         unsigned char* destination = destinationArray->data();
276         
277         unsigned writeIndex = m_writeIndex;
278
279         for (unsigned i = 0; i < len; ++i) {
280             // Buffer access is protected due to modulo operation.
281             float value = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize];
282
283             // Scale from nominal -1.0 -> +1.0 to unsigned byte.
284             double scaledValue = 128.0 * (value + 1.0);
285
286             // Clip to valid range.
287             if (scaledValue < 0.0)
288                 scaledValue = 0.0;
289             if (scaledValue > UCHAR_MAX)
290                 scaledValue = UCHAR_MAX;
291             
292             destination[i] = static_cast<unsigned char>(scaledValue);
293         }
294     }
295 }
296
297 #endif // 3D_CANVAS
298
299 } // namespace WebCore
300
301 #endif // ENABLE(WEB_AUDIO)