+2014-02-23 Dean Jackson <dino@apple.com>
+
+ Missing files from previous commit.
+
2014-02-23 Dean Jackson <dino@apple.com>
Update ANGLE to 836bd2176e5607b14846cf1fbc5932dbc91318f4
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _BASICTYPES_INCLUDED_
+#define _BASICTYPES_INCLUDED_
+
+//
+// Precision qualifiers
+//
+enum TPrecision
+{
+ // These need to be kept sorted
+ EbpUndefined,
+ EbpLow,
+ EbpMedium,
+ EbpHigh
+};
+
+inline const char* getPrecisionString(TPrecision p)
+{
+ switch(p)
+ {
+ case EbpHigh: return "highp"; break;
+ case EbpMedium: return "mediump"; break;
+ case EbpLow: return "lowp"; break;
+ default: return "mediump"; break; // Safest fallback
+ }
+}
+
+//
+// Basic type. Arrays, vectors, etc., are orthogonal to this.
+//
+enum TBasicType
+{
+ EbtVoid,
+ EbtFloat,
+ EbtInt,
+ EbtBool,
+ EbtGuardSamplerBegin, // non type: see implementation of IsSampler()
+ EbtSampler2D,
+ EbtSamplerCube,
+ EbtSamplerExternalOES, // Only valid if OES_EGL_image_external exists.
+ EbtSampler2DRect, // Only valid if GL_ARB_texture_rectangle exists.
+ EbtGuardSamplerEnd, // non type: see implementation of IsSampler()
+ EbtStruct,
+ EbtAddress, // should be deprecated??
+ EbtInvariant // used as a type when qualifying a previously declared variable as being invariant
+};
+
+inline const char* getBasicString(TBasicType t)
+{
+ switch (t)
+ {
+ case EbtVoid: return "void"; break;
+ case EbtFloat: return "float"; break;
+ case EbtInt: return "int"; break;
+ case EbtBool: return "bool"; break;
+ case EbtSampler2D: return "sampler2D"; break;
+ case EbtSamplerCube: return "samplerCube"; break;
+ case EbtSamplerExternalOES: return "samplerExternalOES"; break;
+ case EbtSampler2DRect: return "sampler2DRect"; break;
+ case EbtStruct: return "structure"; break;
+ default: return "unknown type";
+ }
+}
+
+inline bool IsSampler(TBasicType type)
+{
+ return type > EbtGuardSamplerBegin && type < EbtGuardSamplerEnd;
+}
+
+//
+// Qualifiers and built-ins. These are mainly used to see what can be read
+// or written, and by the machine dependent translator to know which registers
+// to allocate variables in. Since built-ins tend to go to different registers
+// than varying or uniform, it makes sense they are peers, not sub-classes.
+//
+enum TQualifier
+{
+ EvqTemporary, // For temporaries (within a function), read/write
+ EvqGlobal, // For globals read/write
+ EvqInternal, // For internal use, not visible to the user
+ EvqConst, // User defined constants and non-output parameters in functions
+ EvqAttribute, // Readonly
+ EvqVaryingIn, // readonly, fragment shaders only
+ EvqVaryingOut, // vertex shaders only read/write
+ EvqInvariantVaryingIn, // readonly, fragment shaders only
+ EvqInvariantVaryingOut, // vertex shaders only read/write
+ EvqUniform, // Readonly, vertex and fragment
+
+ // parameters
+ EvqIn,
+ EvqOut,
+ EvqInOut,
+ EvqConstReadOnly,
+
+ // built-ins written by vertex shader
+ EvqPosition,
+ EvqPointSize,
+
+ // built-ins read by fragment shader
+ EvqFragCoord,
+ EvqFrontFacing,
+ EvqPointCoord,
+
+ // built-ins written by fragment shader
+ EvqFragColor,
+ EvqFragData,
+ EvqFragDepth,
+
+ // end of list
+ EvqLast
+};
+
+//
+// This is just for debug print out, carried along with the definitions above.
+//
+inline const char* getQualifierString(TQualifier q)
+{
+ switch(q)
+ {
+ case EvqTemporary: return "Temporary"; break;
+ case EvqGlobal: return "Global"; break;
+ case EvqConst: return "const"; break;
+ case EvqConstReadOnly: return "const"; break;
+ case EvqAttribute: return "attribute"; break;
+ case EvqVaryingIn: return "varying"; break;
+ case EvqVaryingOut: return "varying"; break;
+ case EvqInvariantVaryingIn: return "invariant varying"; break;
+ case EvqInvariantVaryingOut:return "invariant varying"; break;
+ case EvqUniform: return "uniform"; break;
+ case EvqIn: return "in"; break;
+ case EvqOut: return "out"; break;
+ case EvqInOut: return "inout"; break;
+ case EvqPosition: return "Position"; break;
+ case EvqPointSize: return "PointSize"; break;
+ case EvqFragCoord: return "FragCoord"; break;
+ case EvqFrontFacing: return "FrontFacing"; break;
+ case EvqFragColor: return "FragColor"; break;
+ case EvqFragData: return "FragData"; break;
+ case EvqFragDepth: return "FragDepth"; break;
+ default: return "unknown qualifier";
+ }
+}
+
+#endif // _BASICTYPES_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/BuiltInFunctionEmulator.h"
+
+#include "compiler/translator/SymbolTable.h"
+
+namespace {
+
+// we use macros here instead of function definitions to work around more GLSL
+// compiler bugs, in particular on NVIDIA hardware on Mac OSX. Macros are
+// problematic because if the argument has side-effects they will be repeatedly
+// evaluated. This is unlikely to show up in real shaders, but is something to
+// consider.
+const char* kFunctionEmulationVertexSource[] = {
+ "#error no emulation for cos(float)",
+ "#error no emulation for cos(vec2)",
+ "#error no emulation for cos(vec3)",
+ "#error no emulation for cos(vec4)",
+
+ "#define webgl_distance_emu(x, y) ((x) >= (y) ? (x) - (y) : (y) - (x))",
+ "#error no emulation for distance(vec2, vec2)",
+ "#error no emulation for distance(vec3, vec3)",
+ "#error no emulation for distance(vec4, vec4)",
+
+ "#define webgl_dot_emu(x, y) ((x) * (y))",
+ "#error no emulation for dot(vec2, vec2)",
+ "#error no emulation for dot(vec3, vec3)",
+ "#error no emulation for dot(vec4, vec4)",
+
+ "#define webgl_length_emu(x) ((x) >= 0.0 ? (x) : -(x))",
+ "#error no emulation for length(vec2)",
+ "#error no emulation for length(vec3)",
+ "#error no emulation for length(vec4)",
+
+ "#define webgl_normalize_emu(x) ((x) == 0.0 ? 0.0 : ((x) > 0.0 ? 1.0 : -1.0))",
+ "#error no emulation for normalize(vec2)",
+ "#error no emulation for normalize(vec3)",
+ "#error no emulation for normalize(vec4)",
+
+ "#define webgl_reflect_emu(I, N) ((I) - 2.0 * (N) * (I) * (N))",
+ "#error no emulation for reflect(vec2, vec2)",
+ "#error no emulation for reflect(vec3, vec3)",
+ "#error no emulation for reflect(vec4, vec4)"
+};
+
+const char* kFunctionEmulationFragmentSource[] = {
+ "webgl_emu_precision float webgl_cos_emu(webgl_emu_precision float a) { return cos(a); }",
+ "webgl_emu_precision vec2 webgl_cos_emu(webgl_emu_precision vec2 a) { return cos(a); }",
+ "webgl_emu_precision vec3 webgl_cos_emu(webgl_emu_precision vec3 a) { return cos(a); }",
+ "webgl_emu_precision vec4 webgl_cos_emu(webgl_emu_precision vec4 a) { return cos(a); }",
+
+ "#define webgl_distance_emu(x, y) ((x) >= (y) ? (x) - (y) : (y) - (x))",
+ "#error no emulation for distance(vec2, vec2)",
+ "#error no emulation for distance(vec3, vec3)",
+ "#error no emulation for distance(vec4, vec4)",
+
+ "#define webgl_dot_emu(x, y) ((x) * (y))",
+ "#error no emulation for dot(vec2, vec2)",
+ "#error no emulation for dot(vec3, vec3)",
+ "#error no emulation for dot(vec4, vec4)",
+
+ "#define webgl_length_emu(x) ((x) >= 0.0 ? (x) : -(x))",
+ "#error no emulation for length(vec2)",
+ "#error no emulation for length(vec3)",
+ "#error no emulation for length(vec4)",
+
+ "#define webgl_normalize_emu(x) ((x) == 0.0 ? 0.0 : ((x) > 0.0 ? 1.0 : -1.0))",
+ "#error no emulation for normalize(vec2)",
+ "#error no emulation for normalize(vec3)",
+ "#error no emulation for normalize(vec4)",
+
+ "#define webgl_reflect_emu(I, N) ((I) - 2.0 * (N) * (I) * (N))",
+ "#error no emulation for reflect(vec2, vec2)",
+ "#error no emulation for reflect(vec3, vec3)",
+ "#error no emulation for reflect(vec4, vec4)"
+};
+
+const bool kFunctionEmulationVertexMask[] = {
+#if defined(__APPLE__)
+ // Work around ATI driver bugs in Mac.
+ false, // TFunctionCos1
+ false, // TFunctionCos2
+ false, // TFunctionCos3
+ false, // TFunctionCos4
+ true, // TFunctionDistance1_1
+ false, // TFunctionDistance2_2
+ false, // TFunctionDistance3_3
+ false, // TFunctionDistance4_4
+ true, // TFunctionDot1_1
+ false, // TFunctionDot2_2
+ false, // TFunctionDot3_3
+ false, // TFunctionDot4_4
+ true, // TFunctionLength1
+ false, // TFunctionLength2
+ false, // TFunctionLength3
+ false, // TFunctionLength4
+ true, // TFunctionNormalize1
+ false, // TFunctionNormalize2
+ false, // TFunctionNormalize3
+ false, // TFunctionNormalize4
+ true, // TFunctionReflect1_1
+ false, // TFunctionReflect2_2
+ false, // TFunctionReflect3_3
+ false, // TFunctionReflect4_4
+#else
+ // Work around D3D driver bug in Win.
+ false, // TFunctionCos1
+ false, // TFunctionCos2
+ false, // TFunctionCos3
+ false, // TFunctionCos4
+ false, // TFunctionDistance1_1
+ false, // TFunctionDistance2_2
+ false, // TFunctionDistance3_3
+ false, // TFunctionDistance4_4
+ false, // TFunctionDot1_1
+ false, // TFunctionDot2_2
+ false, // TFunctionDot3_3
+ false, // TFunctionDot4_4
+ false, // TFunctionLength1
+ false, // TFunctionLength2
+ false, // TFunctionLength3
+ false, // TFunctionLength4
+ false, // TFunctionNormalize1
+ false, // TFunctionNormalize2
+ false, // TFunctionNormalize3
+ false, // TFunctionNormalize4
+ false, // TFunctionReflect1_1
+ false, // TFunctionReflect2_2
+ false, // TFunctionReflect3_3
+ false, // TFunctionReflect4_4
+#endif
+ false // TFunctionUnknown
+};
+
+const bool kFunctionEmulationFragmentMask[] = {
+#if defined(__APPLE__)
+ // Work around ATI driver bugs in Mac.
+ true, // TFunctionCos1
+ true, // TFunctionCos2
+ true, // TFunctionCos3
+ true, // TFunctionCos4
+ true, // TFunctionDistance1_1
+ false, // TFunctionDistance2_2
+ false, // TFunctionDistance3_3
+ false, // TFunctionDistance4_4
+ true, // TFunctionDot1_1
+ false, // TFunctionDot2_2
+ false, // TFunctionDot3_3
+ false, // TFunctionDot4_4
+ true, // TFunctionLength1
+ false, // TFunctionLength2
+ false, // TFunctionLength3
+ false, // TFunctionLength4
+ true, // TFunctionNormalize1
+ false, // TFunctionNormalize2
+ false, // TFunctionNormalize3
+ false, // TFunctionNormalize4
+ true, // TFunctionReflect1_1
+ false, // TFunctionReflect2_2
+ false, // TFunctionReflect3_3
+ false, // TFunctionReflect4_4
+#else
+ // Work around D3D driver bug in Win.
+ false, // TFunctionCos1
+ false, // TFunctionCos2
+ false, // TFunctionCos3
+ false, // TFunctionCos4
+ false, // TFunctionDistance1_1
+ false, // TFunctionDistance2_2
+ false, // TFunctionDistance3_3
+ false, // TFunctionDistance4_4
+ false, // TFunctionDot1_1
+ false, // TFunctionDot2_2
+ false, // TFunctionDot3_3
+ false, // TFunctionDot4_4
+ false, // TFunctionLength1
+ false, // TFunctionLength2
+ false, // TFunctionLength3
+ false, // TFunctionLength4
+ false, // TFunctionNormalize1
+ false, // TFunctionNormalize2
+ false, // TFunctionNormalize3
+ false, // TFunctionNormalize4
+ false, // TFunctionReflect1_1
+ false, // TFunctionReflect2_2
+ false, // TFunctionReflect3_3
+ false, // TFunctionReflect4_4
+#endif
+ false // TFunctionUnknown
+};
+
+class BuiltInFunctionEmulationMarker : public TIntermTraverser {
+public:
+ BuiltInFunctionEmulationMarker(BuiltInFunctionEmulator& emulator)
+ : mEmulator(emulator)
+ {
+ }
+
+ virtual bool visitUnary(Visit visit, TIntermUnary* node)
+ {
+ if (visit == PreVisit) {
+ bool needToEmulate = mEmulator.SetFunctionCalled(
+ node->getOp(), node->getOperand()->getType());
+ if (needToEmulate)
+ node->setUseEmulatedFunction();
+ }
+ return true;
+ }
+
+ virtual bool visitAggregate(Visit visit, TIntermAggregate* node)
+ {
+ if (visit == PreVisit) {
+ // Here we handle all the built-in functions instead of the ones we
+ // currently identified as problematic.
+ switch (node->getOp()) {
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ case EOpVectorEqual:
+ case EOpVectorNotEqual:
+ case EOpMod:
+ case EOpPow:
+ case EOpAtan:
+ case EOpMin:
+ case EOpMax:
+ case EOpClamp:
+ case EOpMix:
+ case EOpStep:
+ case EOpSmoothStep:
+ case EOpDistance:
+ case EOpDot:
+ case EOpCross:
+ case EOpFaceForward:
+ case EOpReflect:
+ case EOpRefract:
+ case EOpMul:
+ break;
+ default:
+ return true;
+ };
+ const TIntermSequence& sequence = node->getSequence();
+ // Right now we only handle built-in functions with two parameters.
+ if (sequence.size() != 2)
+ return true;
+ TIntermTyped* param1 = sequence[0]->getAsTyped();
+ TIntermTyped* param2 = sequence[1]->getAsTyped();
+ if (!param1 || !param2)
+ return true;
+ bool needToEmulate = mEmulator.SetFunctionCalled(
+ node->getOp(), param1->getType(), param2->getType());
+ if (needToEmulate)
+ node->setUseEmulatedFunction();
+ }
+ return true;
+ }
+
+private:
+ BuiltInFunctionEmulator& mEmulator;
+};
+
+} // anonymous namepsace
+
+BuiltInFunctionEmulator::BuiltInFunctionEmulator(ShShaderType shaderType)
+{
+ if (shaderType == SH_FRAGMENT_SHADER) {
+ mFunctionMask = kFunctionEmulationFragmentMask;
+ mFunctionSource = kFunctionEmulationFragmentSource;
+ } else {
+ mFunctionMask = kFunctionEmulationVertexMask;
+ mFunctionSource = kFunctionEmulationVertexSource;
+ }
+}
+
+bool BuiltInFunctionEmulator::SetFunctionCalled(
+ TOperator op, const TType& param)
+{
+ TBuiltInFunction function = IdentifyFunction(op, param);
+ return SetFunctionCalled(function);
+}
+
+bool BuiltInFunctionEmulator::SetFunctionCalled(
+ TOperator op, const TType& param1, const TType& param2)
+{
+ TBuiltInFunction function = IdentifyFunction(op, param1, param2);
+ return SetFunctionCalled(function);
+}
+
+bool BuiltInFunctionEmulator::SetFunctionCalled(
+ BuiltInFunctionEmulator::TBuiltInFunction function) {
+ if (function == TFunctionUnknown || mFunctionMask[function] == false)
+ return false;
+ for (size_t i = 0; i < mFunctions.size(); ++i) {
+ if (mFunctions[i] == function)
+ return true;
+ }
+ mFunctions.push_back(function);
+ return true;
+}
+
+void BuiltInFunctionEmulator::OutputEmulatedFunctionDefinition(
+ TInfoSinkBase& out, bool withPrecision) const
+{
+ if (mFunctions.size() == 0)
+ return;
+ out << "// BEGIN: Generated code for built-in function emulation\n\n";
+ if (withPrecision) {
+ out << "#if defined(GL_FRAGMENT_PRECISION_HIGH)\n"
+ << "#define webgl_emu_precision highp\n"
+ << "#else\n"
+ << "#define webgl_emu_precision mediump\n"
+ << "#endif\n\n";
+ } else {
+ out << "#define webgl_emu_precision\n\n";
+ }
+ for (size_t i = 0; i < mFunctions.size(); ++i) {
+ out << mFunctionSource[mFunctions[i]] << "\n\n";
+ }
+ out << "// END: Generated code for built-in function emulation\n\n";
+}
+
+BuiltInFunctionEmulator::TBuiltInFunction
+BuiltInFunctionEmulator::IdentifyFunction(
+ TOperator op, const TType& param)
+{
+ if (param.getNominalSize() > 4)
+ return TFunctionUnknown;
+ unsigned int function = TFunctionUnknown;
+ switch (op) {
+ case EOpCos:
+ function = TFunctionCos1;
+ break;
+ case EOpLength:
+ function = TFunctionLength1;
+ break;
+ case EOpNormalize:
+ function = TFunctionNormalize1;
+ break;
+ default:
+ break;
+ }
+ if (function == TFunctionUnknown)
+ return TFunctionUnknown;
+ if (param.isVector())
+ function += param.getNominalSize() - 1;
+ return static_cast<TBuiltInFunction>(function);
+}
+
+BuiltInFunctionEmulator::TBuiltInFunction
+BuiltInFunctionEmulator::IdentifyFunction(
+ TOperator op, const TType& param1, const TType& param2)
+{
+ // Right now for all the emulated functions with two parameters, the two
+ // parameters have the same type.
+ if (param1.isVector() != param2.isVector() ||
+ param1.getNominalSize() != param2.getNominalSize() ||
+ param1.getNominalSize() > 4)
+ return TFunctionUnknown;
+
+ unsigned int function = TFunctionUnknown;
+ switch (op) {
+ case EOpDistance:
+ function = TFunctionDistance1_1;
+ break;
+ case EOpDot:
+ function = TFunctionDot1_1;
+ break;
+ case EOpReflect:
+ function = TFunctionReflect1_1;
+ break;
+ default:
+ break;
+ }
+ if (function == TFunctionUnknown)
+ return TFunctionUnknown;
+ if (param1.isVector())
+ function += param1.getNominalSize() - 1;
+ return static_cast<TBuiltInFunction>(function);
+}
+
+void BuiltInFunctionEmulator::MarkBuiltInFunctionsForEmulation(
+ TIntermNode* root)
+{
+ ASSERT(root);
+
+ BuiltInFunctionEmulationMarker marker(*this);
+ root->traverse(&marker);
+}
+
+void BuiltInFunctionEmulator::Cleanup()
+{
+ mFunctions.clear();
+}
+
+//static
+TString BuiltInFunctionEmulator::GetEmulatedFunctionName(
+ const TString& name)
+{
+ ASSERT(name[name.length() - 1] == '(');
+ return "webgl_" + name.substr(0, name.length() - 1) + "_emu(";
+}
+
--- /dev/null
+//
+// Copyright (c) 2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILIER_BUILT_IN_FUNCTION_EMULATOR_H_
+#define COMPILIER_BUILT_IN_FUNCTION_EMULATOR_H_
+
+#include "GLSLANG/ShaderLang.h"
+
+#include "compiler/translator/InfoSink.h"
+#include "compiler/translator/intermediate.h"
+
+//
+// This class decides which built-in functions need to be replaced with the
+// emulated ones.
+// It's only a workaround for OpenGL driver bugs, and isn't needed in general.
+//
+class BuiltInFunctionEmulator {
+public:
+ BuiltInFunctionEmulator(ShShaderType shaderType);
+ // Records that a function is called by the shader and might needs to be
+ // emulated. If the function's group is not in mFunctionGroupFilter, this
+ // becomes an no-op.
+ // Returns true if the function call needs to be replaced with an emulated
+ // one.
+ bool SetFunctionCalled(TOperator op, const TType& param);
+ bool SetFunctionCalled(
+ TOperator op, const TType& param1, const TType& param2);
+
+ // Output function emulation definition. This should be before any other
+ // shader source.
+ void OutputEmulatedFunctionDefinition(TInfoSinkBase& out, bool withPrecision) const;
+
+ void MarkBuiltInFunctionsForEmulation(TIntermNode* root);
+
+ void Cleanup();
+
+ // "name(" becomes "webgl_name_emu(".
+ static TString GetEmulatedFunctionName(const TString& name);
+
+private:
+ //
+ // Built-in functions.
+ //
+ enum TBuiltInFunction {
+ TFunctionCos1 = 0, // float cos(float);
+ TFunctionCos2, // vec2 cos(vec2);
+ TFunctionCos3, // vec3 cos(vec3);
+ TFunctionCos4, // vec4 cos(vec4);
+
+ TFunctionDistance1_1, // float distance(float, float);
+ TFunctionDistance2_2, // vec2 distance(vec2, vec2);
+ TFunctionDistance3_3, // vec3 distance(vec3, vec3);
+ TFunctionDistance4_4, // vec4 distance(vec4, vec4);
+
+ TFunctionDot1_1, // float dot(float, float);
+ TFunctionDot2_2, // vec2 dot(vec2, vec2);
+ TFunctionDot3_3, // vec3 dot(vec3, vec3);
+ TFunctionDot4_4, // vec4 dot(vec4, vec4);
+
+ TFunctionLength1, // float length(float);
+ TFunctionLength2, // float length(vec2);
+ TFunctionLength3, // float length(vec3);
+ TFunctionLength4, // float length(vec4);
+
+ TFunctionNormalize1, // float normalize(float);
+ TFunctionNormalize2, // vec2 normalize(vec2);
+ TFunctionNormalize3, // vec3 normalize(vec3);
+ TFunctionNormalize4, // vec4 normalize(vec4);
+
+ TFunctionReflect1_1, // float reflect(float, float);
+ TFunctionReflect2_2, // vec2 reflect(vec2, vec2);
+ TFunctionReflect3_3, // vec3 reflect(vec3, vec3);
+ TFunctionReflect4_4, // vec4 reflect(vec4, vec4);
+
+ TFunctionUnknown
+ };
+
+ TBuiltInFunction IdentifyFunction(TOperator op, const TType& param);
+ TBuiltInFunction IdentifyFunction(
+ TOperator op, const TType& param1, const TType& param2);
+
+ bool SetFunctionCalled(TBuiltInFunction function);
+
+ std::vector<TBuiltInFunction> mFunctions;
+
+ const bool* mFunctionMask; // a boolean flag for each function.
+ const char** mFunctionSource;
+};
+
+#endif // COMPILIER_BUILT_IN_FUNCTION_EMULATOR_H_
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/TranslatorESSL.h"
+#include "compiler/translator/TranslatorGLSL.h"
+#include "compiler/translator/TranslatorHLSL.h"
+
+//
+// This function must be provided to create the actual
+// compile object used by higher level code. It returns
+// a subclass of TCompiler.
+//
+TCompiler* ConstructCompiler(
+ ShShaderType type, ShShaderSpec spec, ShShaderOutput output)
+{
+ switch (output) {
+ case SH_ESSL_OUTPUT:
+ return new TranslatorESSL(type, spec);
+ case SH_GLSL_OUTPUT:
+ return new TranslatorGLSL(type, spec);
+ case SH_HLSL9_OUTPUT:
+ case SH_HLSL11_OUTPUT:
+ return new TranslatorHLSL(type, spec, output);
+ default:
+ return NULL;
+ }
+}
+
+//
+// Delete the compiler made by ConstructCompiler
+//
+void DeleteCompiler(TCompiler* compiler)
+{
+ delete compiler;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _COMMON_INCLUDED_
+#define _COMMON_INCLUDED_
+
+#include <map>
+#include <sstream>
+#include <string>
+#include <vector>
+#include <limits>
+#include <stdio.h>
+
+#include "compiler/translator/PoolAlloc.h"
+#include "compiler/translator/compilerdebug.h"
+#include "common/angleutils.h"
+
+struct TSourceLoc {
+ int first_file;
+ int first_line;
+ int last_file;
+ int last_line;
+};
+
+//
+// Put POOL_ALLOCATOR_NEW_DELETE in base classes to make them use this scheme.
+//
+#define POOL_ALLOCATOR_NEW_DELETE() \
+ void* operator new(size_t s) { return GetGlobalPoolAllocator()->allocate(s); } \
+ void* operator new(size_t, void *_Where) { return (_Where); } \
+ void operator delete(void*) { } \
+ void operator delete(void *, void *) { } \
+ void* operator new[](size_t s) { return GetGlobalPoolAllocator()->allocate(s); } \
+ void* operator new[](size_t, void *_Where) { return (_Where); } \
+ void operator delete[](void*) { } \
+ void operator delete[](void *, void *) { }
+
+//
+// Pool version of string.
+//
+typedef pool_allocator<char> TStringAllocator;
+typedef std::basic_string <char, std::char_traits<char>, TStringAllocator> TString;
+typedef std::basic_ostringstream<char, std::char_traits<char>, TStringAllocator> TStringStream;
+inline TString* NewPoolTString(const char* s)
+{
+ void* memory = GetGlobalPoolAllocator()->allocate(sizeof(TString));
+ return new(memory) TString(s);
+}
+
+//
+// Persistent string memory. Should only be used for strings that survive
+// across compiles.
+//
+#define TPersistString std::string
+#define TPersistStringStream std::ostringstream
+
+//
+// Pool allocator versions of vectors, lists, and maps
+//
+template <class T> class TVector : public std::vector<T, pool_allocator<T> > {
+public:
+ typedef typename std::vector<T, pool_allocator<T> >::size_type size_type;
+ TVector() : std::vector<T, pool_allocator<T> >() {}
+ TVector(const pool_allocator<T>& a) : std::vector<T, pool_allocator<T> >(a) {}
+ TVector(size_type i): std::vector<T, pool_allocator<T> >(i) {}
+};
+
+template <class K, class D, class CMP = std::less<K> >
+class TMap : public std::map<K, D, CMP, pool_allocator<std::pair<const K, D> > > {
+public:
+ typedef pool_allocator<std::pair<const K, D> > tAllocator;
+
+ TMap() : std::map<K, D, CMP, tAllocator>() {}
+ // use correct two-stage name lookup supported in gcc 3.4 and above
+ TMap(const tAllocator& a) : std::map<K, D, CMP, tAllocator>(std::map<K, D, CMP, tAllocator>::key_compare(), a) {}
+};
+
+// Integer to TString conversion
+template <typename T>
+inline TString str(T i)
+{
+ ASSERT(std::numeric_limits<T>::is_integer);
+ char buffer[((8 * sizeof(T)) / 3) + 3];
+ const char *formatStr = std::numeric_limits<T>::is_signed ? "%d" : "%u";
+ snprintf(buffer, sizeof(buffer), formatStr, i);
+ return buffer;
+}
+
+#endif // _COMMON_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/BuiltInFunctionEmulator.h"
+#include "compiler/translator/DetectCallDepth.h"
+#include "compiler/translator/ForLoopUnroll.h"
+#include "compiler/translator/Initialize.h"
+#include "compiler/translator/InitializeParseContext.h"
+#include "compiler/translator/InitializeVariables.h"
+#include "compiler/translator/MapLongVariableNames.h"
+#include "compiler/translator/ParseContext.h"
+#include "compiler/translator/RenameFunction.h"
+#include "compiler/translator/ShHandle.h"
+#include "compiler/translator/UnfoldShortCircuitAST.h"
+#include "compiler/translator/ValidateLimitations.h"
+#include "compiler/translator/VariablePacker.h"
+#include "compiler/translator/depgraph/DependencyGraph.h"
+#include "compiler/translator/depgraph/DependencyGraphOutput.h"
+#include "compiler/translator/timing/RestrictFragmentShaderTiming.h"
+#include "compiler/translator/timing/RestrictVertexShaderTiming.h"
+#include "third_party/compiler/ArrayBoundsClamper.h"
+
+bool isWebGLBasedSpec(ShShaderSpec spec)
+{
+ return spec == SH_WEBGL_SPEC || spec == SH_CSS_SHADERS_SPEC;
+}
+
+namespace {
+class TScopedPoolAllocator
+{
+ public:
+ TScopedPoolAllocator(TPoolAllocator* allocator) : mAllocator(allocator)
+ {
+ mAllocator->push();
+ SetGlobalPoolAllocator(mAllocator);
+ }
+ ~TScopedPoolAllocator()
+ {
+ SetGlobalPoolAllocator(NULL);
+ mAllocator->pop();
+ }
+
+ private:
+ TPoolAllocator* mAllocator;
+};
+
+class TScopedSymbolTableLevel
+{
+ public:
+ TScopedSymbolTableLevel(TSymbolTable* table) : mTable(table)
+ {
+ ASSERT(mTable->atBuiltInLevel());
+ mTable->push();
+ }
+ ~TScopedSymbolTableLevel()
+ {
+ while (!mTable->atBuiltInLevel())
+ mTable->pop();
+ }
+
+ private:
+ TSymbolTable* mTable;
+};
+} // namespace
+
+TShHandleBase::TShHandleBase()
+{
+ allocator.push();
+ SetGlobalPoolAllocator(&allocator);
+}
+
+TShHandleBase::~TShHandleBase()
+{
+ SetGlobalPoolAllocator(NULL);
+ allocator.popAll();
+}
+
+TCompiler::TCompiler(ShShaderType type, ShShaderSpec spec)
+ : shaderType(type),
+ shaderSpec(spec),
+ maxUniformVectors(0),
+ maxVaryingVectors(0),
+ maxExpressionComplexity(0),
+ maxCallStackDepth(0),
+ fragmentPrecisionHigh(false),
+ clampingStrategy(SH_CLAMP_WITH_CLAMP_INTRINSIC),
+ builtInFunctionEmulator(type)
+{
+ longNameMap = LongNameMap::GetInstance();
+}
+
+TCompiler::~TCompiler()
+{
+ ASSERT(longNameMap);
+ longNameMap->Release();
+}
+
+bool TCompiler::Init(const ShBuiltInResources& resources)
+{
+ maxUniformVectors = (shaderType == SH_VERTEX_SHADER) ?
+ resources.MaxVertexUniformVectors :
+ resources.MaxFragmentUniformVectors;
+ maxVaryingVectors = resources.MaxVaryingVectors;
+ maxExpressionComplexity = resources.MaxExpressionComplexity;
+ maxCallStackDepth = resources.MaxCallStackDepth;
+
+ SetGlobalPoolAllocator(&allocator);
+
+ // Generate built-in symbol table.
+ if (!InitBuiltInSymbolTable(resources))
+ return false;
+ InitExtensionBehavior(resources, extensionBehavior);
+ fragmentPrecisionHigh = resources.FragmentPrecisionHigh == 1;
+
+ arrayBoundsClamper.SetClampingStrategy(resources.ArrayIndexClampingStrategy);
+ clampingStrategy = resources.ArrayIndexClampingStrategy;
+
+ hashFunction = resources.HashFunction;
+
+ return true;
+}
+
+bool TCompiler::compile(const char* const shaderStrings[],
+ size_t numStrings,
+ int compileOptions)
+{
+ TScopedPoolAllocator scopedAlloc(&allocator);
+ clearResults();
+
+ if (numStrings == 0)
+ return true;
+
+ // If compiling for WebGL, validate loop and indexing as well.
+ if (isWebGLBasedSpec(shaderSpec))
+ compileOptions |= SH_VALIDATE_LOOP_INDEXING;
+
+ // First string is path of source file if flag is set. The actual source follows.
+ const char* sourcePath = NULL;
+ size_t firstSource = 0;
+ if (compileOptions & SH_SOURCE_PATH)
+ {
+ sourcePath = shaderStrings[0];
+ ++firstSource;
+ }
+
+ TIntermediate intermediate(infoSink);
+ TParseContext parseContext(symbolTable, extensionBehavior, intermediate,
+ shaderType, shaderSpec, compileOptions, true,
+ sourcePath, infoSink);
+ parseContext.fragmentPrecisionHigh = fragmentPrecisionHigh;
+ SetGlobalParseContext(&parseContext);
+
+ // We preserve symbols at the built-in level from compile-to-compile.
+ // Start pushing the user-defined symbols at global level.
+ TScopedSymbolTableLevel scopedSymbolLevel(&symbolTable);
+
+ // Parse shader.
+ bool success =
+ (PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) &&
+ (parseContext.treeRoot != NULL);
+ if (success)
+ {
+ TIntermNode* root = parseContext.treeRoot;
+ success = intermediate.postProcess(root);
+
+ if (success)
+ success = detectCallDepth(root, infoSink, (compileOptions & SH_LIMIT_CALL_STACK_DEPTH) != 0);
+
+ if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING))
+ success = validateLimitations(root);
+
+ if (success && (compileOptions & SH_TIMING_RESTRICTIONS))
+ success = enforceTimingRestrictions(root, (compileOptions & SH_DEPENDENCY_GRAPH) != 0);
+
+ if (success && shaderSpec == SH_CSS_SHADERS_SPEC)
+ rewriteCSSShader(root);
+
+ // Unroll for-loop markup needs to happen after validateLimitations pass.
+ if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX))
+ ForLoopUnroll::MarkForLoopsWithIntegerIndicesForUnrolling(root);
+
+ // Built-in function emulation needs to happen after validateLimitations pass.
+ if (success && (compileOptions & SH_EMULATE_BUILT_IN_FUNCTIONS))
+ builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root);
+
+ // Clamping uniform array bounds needs to happen after validateLimitations pass.
+ if (success && (compileOptions & SH_CLAMP_INDIRECT_ARRAY_BOUNDS))
+ arrayBoundsClamper.MarkIndirectArrayBoundsForClamping(root);
+
+ // Disallow expressions deemed too complex.
+ if (success && (compileOptions & SH_LIMIT_EXPRESSION_COMPLEXITY))
+ success = limitExpressionComplexity(root);
+
+ // Call mapLongVariableNames() before collectAttribsUniforms() so in
+ // collectAttribsUniforms() we already have the mapped symbol names and
+ // we could composite mapped and original variable names.
+ // Also, if we hash all the names, then no need to do this for long names.
+ if (success && (compileOptions & SH_MAP_LONG_VARIABLE_NAMES) && hashFunction == NULL)
+ mapLongVariableNames(root);
+
+ if (success && shaderType == SH_VERTEX_SHADER && (compileOptions & SH_INIT_GL_POSITION))
+ initializeGLPosition(root);
+
+ if (success && (compileOptions & SH_UNFOLD_SHORT_CIRCUIT))
+ {
+ UnfoldShortCircuitAST unfoldShortCircuit;
+ root->traverse(&unfoldShortCircuit);
+ unfoldShortCircuit.updateTree();
+ }
+
+ if (success && (compileOptions & SH_VARIABLES))
+ {
+ collectVariables(root);
+ if (compileOptions & SH_ENFORCE_PACKING_RESTRICTIONS)
+ success = enforcePackingRestrictions();
+
+ if (success && shaderType == SH_VERTEX_SHADER &&
+ (compileOptions & SH_INIT_VARYINGS_WITHOUT_STATIC_USE))
+ initializeVaryingsWithoutStaticUse(root);
+ }
+
+ if (success && (compileOptions & SH_INTERMEDIATE_TREE))
+ intermediate.outputTree(root);
+
+ if (success && (compileOptions & SH_OBJECT_CODE))
+ translate(root);
+ }
+
+ // Cleanup memory.
+ intermediate.remove(parseContext.treeRoot);
+
+ return success;
+}
+
+bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources &resources)
+{
+ compileResources = resources;
+
+ assert(symbolTable.isEmpty());
+ symbolTable.push();
+
+ TPublicType integer;
+ integer.type = EbtInt;
+ integer.size = 1;
+ integer.matrix = false;
+ integer.array = false;
+
+ TPublicType floatingPoint;
+ floatingPoint.type = EbtFloat;
+ floatingPoint.size = 1;
+ floatingPoint.matrix = false;
+ floatingPoint.array = false;
+
+ TPublicType sampler;
+ sampler.size = 1;
+ sampler.matrix = false;
+ sampler.array = false;
+
+ switch(shaderType)
+ {
+ case SH_FRAGMENT_SHADER:
+ symbolTable.setDefaultPrecision(integer, EbpMedium);
+ break;
+ case SH_VERTEX_SHADER:
+ symbolTable.setDefaultPrecision(integer, EbpHigh);
+ symbolTable.setDefaultPrecision(floatingPoint, EbpHigh);
+ break;
+ default:
+ assert(false && "Language not supported");
+ }
+ // We set defaults for all the sampler types, even those that are
+ // only available if an extension exists.
+ for (int samplerType = EbtGuardSamplerBegin + 1;
+ samplerType < EbtGuardSamplerEnd; ++samplerType)
+ {
+ sampler.type = static_cast<TBasicType>(samplerType);
+ symbolTable.setDefaultPrecision(sampler, EbpLow);
+ }
+
+ InsertBuiltInFunctions(shaderType, shaderSpec, resources, symbolTable);
+
+ IdentifyBuiltIns(shaderType, shaderSpec, resources, symbolTable);
+
+ return true;
+}
+
+void TCompiler::clearResults()
+{
+ arrayBoundsClamper.Cleanup();
+ infoSink.info.erase();
+ infoSink.obj.erase();
+ infoSink.debug.erase();
+
+ attribs.clear();
+ uniforms.clear();
+ varyings.clear();
+
+ builtInFunctionEmulator.Cleanup();
+
+ nameMap.clear();
+}
+
+bool TCompiler::detectCallDepth(TIntermNode* root, TInfoSink& infoSink, bool limitCallStackDepth)
+{
+ DetectCallDepth detect(infoSink, limitCallStackDepth, maxCallStackDepth);
+ root->traverse(&detect);
+ switch (detect.detectCallDepth())
+ {
+ case DetectCallDepth::kErrorNone:
+ return true;
+ case DetectCallDepth::kErrorMissingMain:
+ infoSink.info.prefix(EPrefixError);
+ infoSink.info << "Missing main()";
+ return false;
+ case DetectCallDepth::kErrorRecursion:
+ infoSink.info.prefix(EPrefixError);
+ infoSink.info << "Function recursion detected";
+ return false;
+ case DetectCallDepth::kErrorMaxDepthExceeded:
+ infoSink.info.prefix(EPrefixError);
+ infoSink.info << "Function call stack too deep";
+ return false;
+ default:
+ UNREACHABLE();
+ return false;
+ }
+}
+
+void TCompiler::rewriteCSSShader(TIntermNode* root)
+{
+ RenameFunction renamer("main(", "css_main(");
+ root->traverse(&renamer);
+}
+
+bool TCompiler::validateLimitations(TIntermNode* root)
+{
+ ValidateLimitations validate(shaderType, infoSink.info);
+ root->traverse(&validate);
+ return validate.numErrors() == 0;
+}
+
+bool TCompiler::enforceTimingRestrictions(TIntermNode* root, bool outputGraph)
+{
+ if (shaderSpec != SH_WEBGL_SPEC)
+ {
+ infoSink.info << "Timing restrictions must be enforced under the WebGL spec.";
+ return false;
+ }
+
+ if (shaderType == SH_FRAGMENT_SHADER)
+ {
+ TDependencyGraph graph(root);
+
+ // Output any errors first.
+ bool success = enforceFragmentShaderTimingRestrictions(graph);
+
+ // Then, output the dependency graph.
+ if (outputGraph)
+ {
+ TDependencyGraphOutput output(infoSink.info);
+ output.outputAllSpanningTrees(graph);
+ }
+
+ return success;
+ }
+ else
+ {
+ return enforceVertexShaderTimingRestrictions(root);
+ }
+}
+
+bool TCompiler::limitExpressionComplexity(TIntermNode* root)
+{
+ TIntermTraverser traverser;
+ root->traverse(&traverser);
+ TDependencyGraph graph(root);
+
+ for (TFunctionCallVector::const_iterator iter = graph.beginUserDefinedFunctionCalls();
+ iter != graph.endUserDefinedFunctionCalls();
+ ++iter)
+ {
+ TGraphFunctionCall* samplerSymbol = *iter;
+ TDependencyGraphTraverser graphTraverser;
+ samplerSymbol->traverse(&graphTraverser);
+ }
+
+ if (traverser.getMaxDepth() > maxExpressionComplexity)
+ {
+ infoSink.info << "Expression too complex.";
+ return false;
+ }
+ return true;
+}
+
+bool TCompiler::enforceFragmentShaderTimingRestrictions(const TDependencyGraph& graph)
+{
+ RestrictFragmentShaderTiming restrictor(infoSink.info);
+ restrictor.enforceRestrictions(graph);
+ return restrictor.numErrors() == 0;
+}
+
+bool TCompiler::enforceVertexShaderTimingRestrictions(TIntermNode* root)
+{
+ RestrictVertexShaderTiming restrictor(infoSink.info);
+ restrictor.enforceRestrictions(root);
+ return restrictor.numErrors() == 0;
+}
+
+void TCompiler::collectVariables(TIntermNode* root)
+{
+ CollectVariables collect(attribs, uniforms, varyings, hashFunction);
+ root->traverse(&collect);
+}
+
+bool TCompiler::enforcePackingRestrictions()
+{
+ VariablePacker packer;
+ bool success = packer.CheckVariablesWithinPackingLimits(maxUniformVectors, uniforms);
+ if (!success) {
+ infoSink.info.prefix(EPrefixError);
+ infoSink.info << "too many uniforms";
+ return false;
+ }
+
+ success = packer.CheckVariablesWithinPackingLimits(maxVaryingVectors, varyings);
+
+ if (!success) {
+ infoSink.info.prefix(EPrefixError);
+ infoSink.info << "too many varyings";
+ return false;
+ }
+
+ return true;
+}
+
+void TCompiler::initializeGLPosition(TIntermNode* root)
+{
+ InitializeVariables::InitVariableInfoList variables;
+ InitializeVariables::InitVariableInfo var(
+ "gl_Position", TType(EbtFloat, EbpUndefined, EvqPosition, 4));
+ variables.push_back(var);
+ InitializeVariables initializer(variables);
+ root->traverse(&initializer);
+}
+
+void TCompiler::initializeVaryingsWithoutStaticUse(TIntermNode* root)
+{
+ InitializeVariables::InitVariableInfoList variables;
+ for (size_t ii = 0; ii < varyings.size(); ++ii)
+ {
+ const TVariableInfo& varying = varyings[ii];
+ if (varying.staticUse)
+ continue;
+ unsigned char size = 0;
+ bool matrix = false;
+ switch (varying.type)
+ {
+ case SH_FLOAT:
+ size = 1;
+ break;
+ case SH_FLOAT_VEC2:
+ size = 2;
+ break;
+ case SH_FLOAT_VEC3:
+ size = 3;
+ break;
+ case SH_FLOAT_VEC4:
+ size = 4;
+ break;
+ case SH_FLOAT_MAT2:
+ size = 2;
+ matrix = true;
+ break;
+ case SH_FLOAT_MAT3:
+ size = 3;
+ matrix = true;
+ break;
+ case SH_FLOAT_MAT4:
+ size = 4;
+ matrix = true;
+ break;
+ default:
+ ASSERT(false);
+ }
+ TType type(EbtFloat, EbpUndefined, EvqVaryingOut, size, matrix, varying.isArray);
+ TString name = varying.name.c_str();
+ if (varying.isArray)
+ {
+ type.setArraySize(varying.size);
+ name = name.substr(0, name.find_first_of('['));
+ }
+
+ InitializeVariables::InitVariableInfo var(name, type);
+ variables.push_back(var);
+ }
+ InitializeVariables initializer(variables);
+ root->traverse(&initializer);
+}
+
+void TCompiler::mapLongVariableNames(TIntermNode* root)
+{
+ ASSERT(longNameMap);
+ MapLongVariableNames map(longNameMap);
+ root->traverse(&map);
+}
+
+int TCompiler::getMappedNameMaxLength() const
+{
+ return MAX_SHORTENED_IDENTIFIER_SIZE + 1;
+}
+
+const TExtensionBehavior& TCompiler::getExtensionBehavior() const
+{
+ return extensionBehavior;
+}
+
+const ShBuiltInResources& TCompiler::getResources() const
+{
+ return compileResources;
+}
+
+const ArrayBoundsClamper& TCompiler::getArrayBoundsClamper() const
+{
+ return arrayBoundsClamper;
+}
+
+ShArrayIndexClampingStrategy TCompiler::getArrayIndexClampingStrategy() const
+{
+ return clampingStrategy;
+}
+
+const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const
+{
+ return builtInFunctionEmulator;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _CONSTANT_UNION_INCLUDED_
+#define _CONSTANT_UNION_INCLUDED_
+
+#include <assert.h>
+
+class ConstantUnion {
+public:
+ POOL_ALLOCATOR_NEW_DELETE();
+ ConstantUnion()
+ {
+ iConst = 0;
+ type = EbtVoid;
+ }
+
+ void setIConst(int i) {iConst = i; type = EbtInt; }
+ void setFConst(float f) {fConst = f; type = EbtFloat; }
+ void setBConst(bool b) {bConst = b; type = EbtBool; }
+
+ int getIConst() { return iConst; }
+ float getFConst() { return fConst; }
+ bool getBConst() { return bConst; }
+ int getIConst() const { return iConst; }
+ float getFConst() const { return fConst; }
+ bool getBConst() const { return bConst; }
+
+ bool operator==(const int i) const
+ {
+ return i == iConst;
+ }
+
+ bool operator==(const float f) const
+ {
+ return f == fConst;
+ }
+
+ bool operator==(const bool b) const
+ {
+ return b == bConst;
+ }
+
+ bool operator==(const ConstantUnion& constant) const
+ {
+ if (constant.type != type)
+ return false;
+
+ switch (type) {
+ case EbtInt:
+ return constant.iConst == iConst;
+ case EbtFloat:
+ return constant.fConst == fConst;
+ case EbtBool:
+ return constant.bConst == bConst;
+ default:
+ return false;
+ }
+ }
+
+ bool operator!=(const int i) const
+ {
+ return !operator==(i);
+ }
+
+ bool operator!=(const float f) const
+ {
+ return !operator==(f);
+ }
+
+ bool operator!=(const bool b) const
+ {
+ return !operator==(b);
+ }
+
+ bool operator!=(const ConstantUnion& constant) const
+ {
+ return !operator==(constant);
+ }
+
+ bool operator>(const ConstantUnion& constant) const
+ {
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt:
+ return iConst > constant.iConst;
+ case EbtFloat:
+ return fConst > constant.fConst;
+ default:
+ return false; // Invalid operation, handled at semantic analysis
+ }
+ }
+
+ bool operator<(const ConstantUnion& constant) const
+ {
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt:
+ return iConst < constant.iConst;
+ case EbtFloat:
+ return fConst < constant.fConst;
+ default:
+ return false; // Invalid operation, handled at semantic analysis
+ }
+ }
+
+ ConstantUnion operator+(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst + constant.iConst); break;
+ case EbtFloat: returnValue.setFConst(fConst + constant.fConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator-(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst - constant.iConst); break;
+ case EbtFloat: returnValue.setFConst(fConst - constant.fConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator*(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst * constant.iConst); break;
+ case EbtFloat: returnValue.setFConst(fConst * constant.fConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator%(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst % constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator>>(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst >> constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator<<(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst << constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator&(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst & constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator|(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst | constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator^(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtInt: returnValue.setIConst(iConst ^ constant.iConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator&&(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtBool: returnValue.setBConst(bConst && constant.bConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ ConstantUnion operator||(const ConstantUnion& constant) const
+ {
+ ConstantUnion returnValue;
+ assert(type == constant.type);
+ switch (type) {
+ case EbtBool: returnValue.setBConst(bConst || constant.bConst); break;
+ default: assert(false && "Default missing");
+ }
+
+ return returnValue;
+ }
+
+ TBasicType getType() const { return type; }
+private:
+
+ union {
+ int iConst; // used for ivec, scalar ints
+ bool bConst; // used for bvec, scalar bools
+ float fConst; // used for vec, mat, scalar floats
+ } ;
+
+ TBasicType type;
+};
+
+#endif // _CONSTANT_UNION_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/DetectCallDepth.h"
+#include "compiler/translator/InfoSink.h"
+
+DetectCallDepth::FunctionNode::FunctionNode(const TString& fname)
+ : name(fname),
+ visit(PreVisit)
+{
+}
+
+const TString& DetectCallDepth::FunctionNode::getName() const
+{
+ return name;
+}
+
+void DetectCallDepth::FunctionNode::addCallee(
+ DetectCallDepth::FunctionNode* callee)
+{
+ for (size_t i = 0; i < callees.size(); ++i) {
+ if (callees[i] == callee)
+ return;
+ }
+ callees.push_back(callee);
+}
+
+int DetectCallDepth::FunctionNode::detectCallDepth(DetectCallDepth* detectCallDepth, int depth)
+{
+ ASSERT(visit == PreVisit);
+ ASSERT(detectCallDepth);
+
+ int maxDepth = depth;
+ visit = InVisit;
+ for (size_t i = 0; i < callees.size(); ++i) {
+ switch (callees[i]->visit) {
+ case InVisit:
+ // cycle detected, i.e., recursion detected.
+ return kInfiniteCallDepth;
+ case PostVisit:
+ break;
+ case PreVisit: {
+ // Check before we recurse so we don't go too depth
+ if (detectCallDepth->checkExceedsMaxDepth(depth))
+ return depth;
+ int callDepth = callees[i]->detectCallDepth(detectCallDepth, depth + 1);
+ // Check after we recurse so we can exit immediately and provide info.
+ if (detectCallDepth->checkExceedsMaxDepth(callDepth)) {
+ detectCallDepth->getInfoSink().info << "<-" << callees[i]->getName();
+ return callDepth;
+ }
+ maxDepth = std::max(callDepth, maxDepth);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ visit = PostVisit;
+ return maxDepth;
+}
+
+void DetectCallDepth::FunctionNode::reset()
+{
+ visit = PreVisit;
+}
+
+DetectCallDepth::DetectCallDepth(TInfoSink& infoSink, bool limitCallStackDepth, int maxCallStackDepth)
+ : TIntermTraverser(true, false, true, false),
+ currentFunction(NULL),
+ infoSink(infoSink),
+ maxDepth(limitCallStackDepth ? maxCallStackDepth : FunctionNode::kInfiniteCallDepth)
+{
+}
+
+DetectCallDepth::~DetectCallDepth()
+{
+ for (size_t i = 0; i < functions.size(); ++i)
+ delete functions[i];
+}
+
+bool DetectCallDepth::visitAggregate(Visit visit, TIntermAggregate* node)
+{
+ switch (node->getOp())
+ {
+ case EOpPrototype:
+ // Function declaration.
+ // Don't add FunctionNode here because node->getName() is the
+ // unmangled function name.
+ break;
+ case EOpFunction: {
+ // Function definition.
+ if (visit == PreVisit) {
+ currentFunction = findFunctionByName(node->getName());
+ if (currentFunction == NULL) {
+ currentFunction = new FunctionNode(node->getName());
+ functions.push_back(currentFunction);
+ }
+ } else if (visit == PostVisit) {
+ currentFunction = NULL;
+ }
+ break;
+ }
+ case EOpFunctionCall: {
+ // Function call.
+ if (visit == PreVisit) {
+ FunctionNode* func = findFunctionByName(node->getName());
+ if (func == NULL) {
+ func = new FunctionNode(node->getName());
+ functions.push_back(func);
+ }
+ if (currentFunction)
+ currentFunction->addCallee(func);
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ return true;
+}
+
+bool DetectCallDepth::checkExceedsMaxDepth(int depth)
+{
+ return depth >= maxDepth;
+}
+
+void DetectCallDepth::resetFunctionNodes()
+{
+ for (size_t i = 0; i < functions.size(); ++i) {
+ functions[i]->reset();
+ }
+}
+
+DetectCallDepth::ErrorCode DetectCallDepth::detectCallDepthForFunction(FunctionNode* func)
+{
+ currentFunction = NULL;
+ resetFunctionNodes();
+
+ int maxCallDepth = func->detectCallDepth(this, 1);
+
+ if (maxCallDepth == FunctionNode::kInfiniteCallDepth)
+ return kErrorRecursion;
+
+ if (maxCallDepth >= maxDepth)
+ return kErrorMaxDepthExceeded;
+
+ return kErrorNone;
+}
+
+DetectCallDepth::ErrorCode DetectCallDepth::detectCallDepth()
+{
+ if (maxDepth != FunctionNode::kInfiniteCallDepth) {
+ // Check all functions because the driver may fail on them
+ // TODO: Before detectingRecursion, strip unused functions.
+ for (size_t i = 0; i < functions.size(); ++i) {
+ ErrorCode error = detectCallDepthForFunction(functions[i]);
+ if (error != kErrorNone)
+ return error;
+ }
+ } else {
+ FunctionNode* main = findFunctionByName("main(");
+ if (main == NULL)
+ return kErrorMissingMain;
+
+ return detectCallDepthForFunction(main);
+ }
+
+ return kErrorNone;
+}
+
+DetectCallDepth::FunctionNode* DetectCallDepth::findFunctionByName(
+ const TString& name)
+{
+ for (size_t i = 0; i < functions.size(); ++i) {
+ if (functions[i]->getName() == name)
+ return functions[i];
+ }
+ return NULL;
+}
+
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_DETECT_RECURSION_H_
+#define COMPILER_DETECT_RECURSION_H_
+
+#include "GLSLANG/ShaderLang.h"
+
+#include <limits.h>
+#include "compiler/translator/intermediate.h"
+#include "compiler/translator/VariableInfo.h"
+
+class TInfoSink;
+
+// Traverses intermediate tree to detect function recursion.
+class DetectCallDepth : public TIntermTraverser {
+public:
+ enum ErrorCode {
+ kErrorMissingMain,
+ kErrorRecursion,
+ kErrorMaxDepthExceeded,
+ kErrorNone
+ };
+
+ DetectCallDepth(TInfoSink& infoSync, bool limitCallStackDepth, int maxCallStackDepth);
+ ~DetectCallDepth();
+
+ virtual bool visitAggregate(Visit, TIntermAggregate*);
+
+ bool checkExceedsMaxDepth(int depth);
+
+ ErrorCode detectCallDepth();
+
+private:
+ class FunctionNode {
+ public:
+ static const int kInfiniteCallDepth = INT_MAX;
+
+ FunctionNode(const TString& fname);
+
+ const TString& getName() const;
+
+ // If a function is already in the callee list, this becomes a no-op.
+ void addCallee(FunctionNode* callee);
+
+ // Returns kInifinityCallDepth if recursive function calls are detected.
+ int detectCallDepth(DetectCallDepth* detectCallDepth, int depth);
+
+ // Reset state.
+ void reset();
+
+ private:
+ // mangled function name is unique.
+ TString name;
+
+ // functions that are directly called by this function.
+ TVector<FunctionNode*> callees;
+
+ Visit visit;
+ };
+
+ ErrorCode detectCallDepthForFunction(FunctionNode* func);
+ FunctionNode* findFunctionByName(const TString& name);
+ void resetFunctionNodes();
+
+ TInfoSink& getInfoSink() { return infoSink; }
+
+ TVector<FunctionNode*> functions;
+ FunctionNode* currentFunction;
+ TInfoSink& infoSink;
+ int maxDepth;
+
+ DetectCallDepth(const DetectCallDepth&);
+ void operator=(const DetectCallDepth&);
+};
+
+#endif // COMPILER_DETECT_RECURSION_H_
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// Contains analysis utilities for dealing with HLSL's lack of support for
+// the use of intrinsic functions which (implicitly or explicitly) compute
+// gradients of functions with discontinuities.
+//
+
+#include "compiler/translator/DetectDiscontinuity.h"
+
+#include "compiler/translator/ParseContext.h"
+
+namespace sh
+{
+bool DetectLoopDiscontinuity::traverse(TIntermNode *node)
+{
+ mLoopDepth = 0;
+ mLoopDiscontinuity = false;
+ node->traverse(this);
+ return mLoopDiscontinuity;
+}
+
+bool DetectLoopDiscontinuity::visitLoop(Visit visit, TIntermLoop *loop)
+{
+ if (visit == PreVisit)
+ {
+ ++mLoopDepth;
+ }
+ else if (visit == PostVisit)
+ {
+ --mLoopDepth;
+ }
+
+ return true;
+}
+
+bool DetectLoopDiscontinuity::visitBranch(Visit visit, TIntermBranch *node)
+{
+ if (mLoopDiscontinuity)
+ {
+ return false;
+ }
+
+ if (!mLoopDepth)
+ {
+ return true;
+ }
+
+ switch (node->getFlowOp())
+ {
+ case EOpKill:
+ break;
+ case EOpBreak:
+ case EOpContinue:
+ case EOpReturn:
+ mLoopDiscontinuity = true;
+ break;
+ default: UNREACHABLE();
+ }
+
+ return !mLoopDiscontinuity;
+}
+
+bool DetectLoopDiscontinuity::visitAggregate(Visit visit, TIntermAggregate *node)
+{
+ return !mLoopDiscontinuity;
+}
+
+bool containsLoopDiscontinuity(TIntermNode *node)
+{
+ DetectLoopDiscontinuity detectLoopDiscontinuity;
+ return detectLoopDiscontinuity.traverse(node);
+}
+
+bool DetectGradientOperation::traverse(TIntermNode *node)
+{
+ mGradientOperation = false;
+ node->traverse(this);
+ return mGradientOperation;
+}
+
+bool DetectGradientOperation::visitUnary(Visit visit, TIntermUnary *node)
+{
+ if (mGradientOperation)
+ {
+ return false;
+ }
+
+ switch (node->getOp())
+ {
+ case EOpDFdx:
+ case EOpDFdy:
+ mGradientOperation = true;
+ default:
+ break;
+ }
+
+ return !mGradientOperation;
+}
+
+bool DetectGradientOperation::visitAggregate(Visit visit, TIntermAggregate *node)
+{
+ if (mGradientOperation)
+ {
+ return false;
+ }
+
+ if (node->getOp() == EOpFunctionCall)
+ {
+ if (!node->isUserDefined())
+ {
+ TString name = TFunction::unmangleName(node->getName());
+
+ if (name == "texture2D" ||
+ name == "texture2DProj" ||
+ name == "textureCube")
+ {
+ mGradientOperation = true;
+ }
+ }
+ else
+ {
+ // When a user defined function is called, we have to
+ // conservatively assume it to contain gradient operations
+ mGradientOperation = true;
+ }
+ }
+
+ return !mGradientOperation;
+}
+
+bool containsGradientOperation(TIntermNode *node)
+{
+ DetectGradientOperation detectGradientOperation;
+ return detectGradientOperation.traverse(node);
+}
+}
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// Contains analysis utilities for dealing with HLSL's lack of support for
+// the use of intrinsic functions which (implicitly or explicitly) compute
+// gradients of functions with discontinuities.
+//
+
+#ifndef COMPILER_DETECTDISCONTINUITY_H_
+#define COMPILER_DETECTDISCONTINUITY_H_
+
+#include "compiler/translator/intermediate.h"
+
+namespace sh
+{
+// Checks whether a loop can run for a variable number of iterations
+class DetectLoopDiscontinuity : public TIntermTraverser
+{
+ public:
+ bool traverse(TIntermNode *node);
+
+ protected:
+ bool visitBranch(Visit visit, TIntermBranch *node);
+ bool visitLoop(Visit visit, TIntermLoop *loop);
+ bool visitAggregate(Visit visit, TIntermAggregate *node);
+
+ int mLoopDepth;
+ bool mLoopDiscontinuity;
+};
+
+bool containsLoopDiscontinuity(TIntermNode *node);
+
+// Checks for intrinsic functions which compute gradients
+class DetectGradientOperation : public TIntermTraverser
+{
+ public:
+ bool traverse(TIntermNode *node);
+
+ protected:
+ bool visitUnary(Visit visit, TIntermUnary *node);
+ bool visitAggregate(Visit visit, TIntermAggregate *node);
+
+ bool mGradientOperation;
+};
+
+bool containsGradientOperation(TIntermNode *node);
+
+}
+
+#endif // COMPILER_DETECTDISCONTINUITY_H_
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/Diagnostics.h"
+
+#include "compiler/translator/compilerdebug.h"
+#include "compiler/translator/InfoSink.h"
+#include "compiler/preprocessor/SourceLocation.h"
+
+TDiagnostics::TDiagnostics(TInfoSink& infoSink) :
+ mInfoSink(infoSink),
+ mNumErrors(0),
+ mNumWarnings(0)
+{
+}
+
+TDiagnostics::~TDiagnostics()
+{
+}
+
+void TDiagnostics::writeInfo(Severity severity,
+ const pp::SourceLocation& loc,
+ const std::string& reason,
+ const std::string& token,
+ const std::string& extra)
+{
+ TPrefixType prefix = EPrefixNone;
+ switch (severity)
+ {
+ case PP_ERROR:
+ ++mNumErrors;
+ prefix = EPrefixError;
+ break;
+ case PP_WARNING:
+ ++mNumWarnings;
+ prefix = EPrefixWarning;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ TInfoSinkBase& sink = mInfoSink.info;
+ /* VC++ format: file(linenum) : error #: 'token' : extrainfo */
+ sink.prefix(prefix);
+ sink.location(loc.file, loc.line);
+ sink << "'" << token << "' : " << reason << " " << extra << "\n";
+}
+
+void TDiagnostics::writeDebug(const std::string& str)
+{
+ mInfoSink.debug << str;
+}
+
+void TDiagnostics::print(ID id,
+ const pp::SourceLocation& loc,
+ const std::string& text)
+{
+ writeInfo(severity(id), loc, message(id), text, "");
+}
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_DIAGNOSTICS_H_
+#define COMPILER_DIAGNOSTICS_H_
+
+#include "compiler/preprocessor/DiagnosticsBase.h"
+
+class TInfoSink;
+
+class TDiagnostics : public pp::Diagnostics
+{
+ public:
+ TDiagnostics(TInfoSink& infoSink);
+ virtual ~TDiagnostics();
+
+ TInfoSink& infoSink() { return mInfoSink; }
+
+ int numErrors() const { return mNumErrors; }
+ int numWarnings() const { return mNumWarnings; }
+
+ void writeInfo(Severity severity,
+ const pp::SourceLocation& loc,
+ const std::string& reason,
+ const std::string& token,
+ const std::string& extra);
+
+ void writeDebug(const std::string& str);
+
+ protected:
+ virtual void print(ID id,
+ const pp::SourceLocation& loc,
+ const std::string& text);
+
+ private:
+ TInfoSink& mInfoSink;
+ int mNumErrors;
+ int mNumWarnings;
+};
+
+#endif // COMPILER_DIAGNOSTICS_H_
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/DirectiveHandler.h"
+
+#include <sstream>
+
+#include "compiler/translator/compilerdebug.h"
+#include "compiler/translator/Diagnostics.h"
+
+static TBehavior getBehavior(const std::string& str)
+{
+ static const std::string kRequire("require");
+ static const std::string kEnable("enable");
+ static const std::string kDisable("disable");
+ static const std::string kWarn("warn");
+
+ if (str == kRequire) return EBhRequire;
+ else if (str == kEnable) return EBhEnable;
+ else if (str == kDisable) return EBhDisable;
+ else if (str == kWarn) return EBhWarn;
+ return EBhUndefined;
+}
+
+TDirectiveHandler::TDirectiveHandler(TExtensionBehavior& extBehavior,
+ TDiagnostics& diagnostics)
+ : mExtensionBehavior(extBehavior),
+ mDiagnostics(diagnostics)
+{
+}
+
+TDirectiveHandler::~TDirectiveHandler()
+{
+}
+
+void TDirectiveHandler::handleError(const pp::SourceLocation& loc,
+ const std::string& msg)
+{
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc, msg, "", "");
+}
+
+void TDirectiveHandler::handlePragma(const pp::SourceLocation& loc,
+ const std::string& name,
+ const std::string& value)
+{
+ static const std::string kSTDGL("STDGL");
+ static const std::string kOptimize("optimize");
+ static const std::string kDebug("debug");
+ static const std::string kOn("on");
+ static const std::string kOff("off");
+
+ bool invalidValue = false;
+ if (name == kSTDGL)
+ {
+ // The STDGL pragma is used to reserve pragmas for use by future
+ // revisions of GLSL. Ignore it.
+ return;
+ }
+ else if (name == kOptimize)
+ {
+ if (value == kOn) mPragma.optimize = true;
+ else if (value == kOff) mPragma.optimize = false;
+ else invalidValue = true;
+ }
+ else if (name == kDebug)
+ {
+ if (value == kOn) mPragma.debug = true;
+ else if (value == kOff) mPragma.debug = false;
+ else invalidValue = true;
+ }
+ else
+ {
+ mDiagnostics.report(pp::Diagnostics::PP_UNRECOGNIZED_PRAGMA, loc, name);
+ return;
+ }
+
+ if (invalidValue)
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc,
+ "invalid pragma value", value,
+ "'on' or 'off' expected");
+}
+
+void TDirectiveHandler::handleExtension(const pp::SourceLocation& loc,
+ const std::string& name,
+ const std::string& behavior)
+{
+ static const std::string kExtAll("all");
+
+ TBehavior behaviorVal = getBehavior(behavior);
+ if (behaviorVal == EBhUndefined)
+ {
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc,
+ "behavior", name, "invalid");
+ return;
+ }
+
+ if (name == kExtAll)
+ {
+ if (behaviorVal == EBhRequire)
+ {
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc,
+ "extension", name,
+ "cannot have 'require' behavior");
+ }
+ else if (behaviorVal == EBhEnable)
+ {
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc,
+ "extension", name,
+ "cannot have 'enable' behavior");
+ }
+ else
+ {
+ for (TExtensionBehavior::iterator iter = mExtensionBehavior.begin();
+ iter != mExtensionBehavior.end(); ++iter)
+ iter->second = behaviorVal;
+ }
+ return;
+ }
+
+ TExtensionBehavior::iterator iter = mExtensionBehavior.find(name);
+ if (iter != mExtensionBehavior.end())
+ {
+ iter->second = behaviorVal;
+ return;
+ }
+
+ pp::Diagnostics::Severity severity = pp::Diagnostics::PP_ERROR;
+ switch (behaviorVal) {
+ case EBhRequire:
+ severity = pp::Diagnostics::PP_ERROR;
+ break;
+ case EBhEnable:
+ case EBhWarn:
+ case EBhDisable:
+ severity = pp::Diagnostics::PP_WARNING;
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ mDiagnostics.writeInfo(severity, loc,
+ "extension", name, "is not supported");
+}
+
+void TDirectiveHandler::handleVersion(const pp::SourceLocation& loc,
+ int version)
+{
+ static const int kVersion = 100;
+
+ if (version != kVersion)
+ {
+ std::stringstream stream;
+ stream << version;
+ std::string str = stream.str();
+ mDiagnostics.writeInfo(pp::Diagnostics::PP_ERROR, loc,
+ "version number", str, "not supported");
+ }
+}
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_DIRECTIVE_HANDLER_H_
+#define COMPILER_DIRECTIVE_HANDLER_H_
+
+#include "compiler/translator/ExtensionBehavior.h"
+#include "compiler/translator/Pragma.h"
+#include "compiler/preprocessor/DirectiveHandlerBase.h"
+
+class TDiagnostics;
+
+class TDirectiveHandler : public pp::DirectiveHandler
+{
+ public:
+ TDirectiveHandler(TExtensionBehavior& extBehavior,
+ TDiagnostics& diagnostics);
+ virtual ~TDirectiveHandler();
+
+ const TPragma& pragma() const { return mPragma; }
+ const TExtensionBehavior& extensionBehavior() const { return mExtensionBehavior; }
+
+ virtual void handleError(const pp::SourceLocation& loc,
+ const std::string& msg);
+
+ virtual void handlePragma(const pp::SourceLocation& loc,
+ const std::string& name,
+ const std::string& value);
+
+ virtual void handleExtension(const pp::SourceLocation& loc,
+ const std::string& name,
+ const std::string& behavior);
+
+ virtual void handleVersion(const pp::SourceLocation& loc,
+ int version);
+
+ private:
+ TPragma mPragma;
+ TExtensionBehavior& mExtensionBehavior;
+ TDiagnostics& mDiagnostics;
+};
+
+#endif // COMPILER_DIRECTIVE_HANDLER_H_
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _EXTENSION_BEHAVIOR_INCLUDED_
+#define _EXTENSION_BEHAVIOR_INCLUDED_
+
+#include <map>
+#include <string>
+
+typedef enum
+{
+ EBhRequire,
+ EBhEnable,
+ EBhWarn,
+ EBhDisable,
+ EBhUndefined
+} TBehavior;
+
+inline const char* getBehaviorString(TBehavior b)
+{
+ switch(b)
+ {
+ case EBhRequire: return "require";
+ case EBhEnable: return "enable";
+ case EBhWarn: return "warn";
+ case EBhDisable: return "disable";
+ default: return NULL;
+ }
+}
+
+// Mapping between extension name and behavior.
+typedef std::map<std::string, TBehavior> TExtensionBehavior;
+
+#endif // _EXTENSION_TABLE_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/ForLoopUnroll.h"
+
+namespace {
+
+class IntegerForLoopUnrollMarker : public TIntermTraverser {
+public:
+
+ virtual bool visitLoop(Visit, TIntermLoop* node)
+ {
+ // This is called after ValidateLimitations pass, so all the ASSERT
+ // should never fail.
+ // See ValidateLimitations::validateForLoopInit().
+ ASSERT(node);
+ ASSERT(node->getType() == ELoopFor);
+ ASSERT(node->getInit());
+ TIntermAggregate* decl = node->getInit()->getAsAggregate();
+ ASSERT(decl && decl->getOp() == EOpDeclaration);
+ TIntermSequence& declSeq = decl->getSequence();
+ ASSERT(declSeq.size() == 1);
+ TIntermBinary* declInit = declSeq[0]->getAsBinaryNode();
+ ASSERT(declInit && declInit->getOp() == EOpInitialize);
+ ASSERT(declInit->getLeft());
+ TIntermSymbol* symbol = declInit->getLeft()->getAsSymbolNode();
+ ASSERT(symbol);
+ TBasicType type = symbol->getBasicType();
+ ASSERT(type == EbtInt || type == EbtFloat);
+ if (type == EbtInt)
+ node->setUnrollFlag(true);
+ return true;
+ }
+
+};
+
+} // anonymous namepsace
+
+void ForLoopUnroll::FillLoopIndexInfo(TIntermLoop* node, TLoopIndexInfo& info)
+{
+ ASSERT(node->getType() == ELoopFor);
+ ASSERT(node->getUnrollFlag());
+
+ TIntermNode* init = node->getInit();
+ ASSERT(init != NULL);
+ TIntermAggregate* decl = init->getAsAggregate();
+ ASSERT((decl != NULL) && (decl->getOp() == EOpDeclaration));
+ TIntermSequence& declSeq = decl->getSequence();
+ ASSERT(declSeq.size() == 1);
+ TIntermBinary* declInit = declSeq[0]->getAsBinaryNode();
+ ASSERT((declInit != NULL) && (declInit->getOp() == EOpInitialize));
+ TIntermSymbol* symbol = declInit->getLeft()->getAsSymbolNode();
+ ASSERT(symbol != NULL);
+ ASSERT(symbol->getBasicType() == EbtInt);
+
+ info.id = symbol->getId();
+
+ ASSERT(declInit->getRight() != NULL);
+ TIntermConstantUnion* initNode = declInit->getRight()->getAsConstantUnion();
+ ASSERT(initNode != NULL);
+
+ info.initValue = evaluateIntConstant(initNode);
+ info.currentValue = info.initValue;
+
+ TIntermNode* cond = node->getCondition();
+ ASSERT(cond != NULL);
+ TIntermBinary* binOp = cond->getAsBinaryNode();
+ ASSERT(binOp != NULL);
+ ASSERT(binOp->getRight() != NULL);
+ ASSERT(binOp->getRight()->getAsConstantUnion() != NULL);
+
+ info.incrementValue = getLoopIncrement(node);
+ info.stopValue = evaluateIntConstant(
+ binOp->getRight()->getAsConstantUnion());
+ info.op = binOp->getOp();
+}
+
+void ForLoopUnroll::Step()
+{
+ ASSERT(mLoopIndexStack.size() > 0);
+ TLoopIndexInfo& info = mLoopIndexStack[mLoopIndexStack.size() - 1];
+ info.currentValue += info.incrementValue;
+}
+
+bool ForLoopUnroll::SatisfiesLoopCondition()
+{
+ ASSERT(mLoopIndexStack.size() > 0);
+ TLoopIndexInfo& info = mLoopIndexStack[mLoopIndexStack.size() - 1];
+ // Relational operator is one of: > >= < <= == or !=.
+ switch (info.op) {
+ case EOpEqual:
+ return (info.currentValue == info.stopValue);
+ case EOpNotEqual:
+ return (info.currentValue != info.stopValue);
+ case EOpLessThan:
+ return (info.currentValue < info.stopValue);
+ case EOpGreaterThan:
+ return (info.currentValue > info.stopValue);
+ case EOpLessThanEqual:
+ return (info.currentValue <= info.stopValue);
+ case EOpGreaterThanEqual:
+ return (info.currentValue >= info.stopValue);
+ default:
+ UNREACHABLE();
+ }
+ return false;
+}
+
+bool ForLoopUnroll::NeedsToReplaceSymbolWithValue(TIntermSymbol* symbol)
+{
+ for (TVector<TLoopIndexInfo>::iterator i = mLoopIndexStack.begin();
+ i != mLoopIndexStack.end();
+ ++i) {
+ if (i->id == symbol->getId())
+ return true;
+ }
+ return false;
+}
+
+int ForLoopUnroll::GetLoopIndexValue(TIntermSymbol* symbol)
+{
+ for (TVector<TLoopIndexInfo>::iterator i = mLoopIndexStack.begin();
+ i != mLoopIndexStack.end();
+ ++i) {
+ if (i->id == symbol->getId())
+ return i->currentValue;
+ }
+ UNREACHABLE();
+ return false;
+}
+
+void ForLoopUnroll::Push(TLoopIndexInfo& info)
+{
+ mLoopIndexStack.push_back(info);
+}
+
+void ForLoopUnroll::Pop()
+{
+ mLoopIndexStack.pop_back();
+}
+
+// static
+void ForLoopUnroll::MarkForLoopsWithIntegerIndicesForUnrolling(
+ TIntermNode* root)
+{
+ ASSERT(root);
+
+ IntegerForLoopUnrollMarker marker;
+ root->traverse(&marker);
+}
+
+int ForLoopUnroll::getLoopIncrement(TIntermLoop* node)
+{
+ TIntermNode* expr = node->getExpression();
+ ASSERT(expr != NULL);
+ // for expression has one of the following forms:
+ // loop_index++
+ // loop_index--
+ // loop_index += constant_expression
+ // loop_index -= constant_expression
+ // ++loop_index
+ // --loop_index
+ // The last two forms are not specified in the spec, but I am assuming
+ // its an oversight.
+ TIntermUnary* unOp = expr->getAsUnaryNode();
+ TIntermBinary* binOp = unOp ? NULL : expr->getAsBinaryNode();
+
+ TOperator op = EOpNull;
+ TIntermConstantUnion* incrementNode = NULL;
+ if (unOp != NULL) {
+ op = unOp->getOp();
+ } else if (binOp != NULL) {
+ op = binOp->getOp();
+ ASSERT(binOp->getRight() != NULL);
+ incrementNode = binOp->getRight()->getAsConstantUnion();
+ ASSERT(incrementNode != NULL);
+ }
+
+ int increment = 0;
+ // The operator is one of: ++ -- += -=.
+ switch (op) {
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ ASSERT((unOp != NULL) && (binOp == NULL));
+ increment = 1;
+ break;
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ ASSERT((unOp != NULL) && (binOp == NULL));
+ increment = -1;
+ break;
+ case EOpAddAssign:
+ ASSERT((unOp == NULL) && (binOp != NULL));
+ increment = evaluateIntConstant(incrementNode);
+ break;
+ case EOpSubAssign:
+ ASSERT((unOp == NULL) && (binOp != NULL));
+ increment = - evaluateIntConstant(incrementNode);
+ break;
+ default:
+ ASSERT(false);
+ }
+
+ return increment;
+}
+
+int ForLoopUnroll::evaluateIntConstant(TIntermConstantUnion* node)
+{
+ ASSERT((node != NULL) && (node->getUnionArrayPointer() != NULL));
+ return node->getIConst(0);
+}
+
--- /dev/null
+//
+// Copyright (c) 2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_FORLOOPUNROLL_H_
+#define COMPILER_FORLOOPUNROLL_H_
+
+#include "compiler/translator/intermediate.h"
+
+struct TLoopIndexInfo {
+ int id;
+ int initValue;
+ int stopValue;
+ int incrementValue;
+ TOperator op;
+ int currentValue;
+};
+
+class ForLoopUnroll {
+public:
+ ForLoopUnroll() { }
+
+ void FillLoopIndexInfo(TIntermLoop* node, TLoopIndexInfo& info);
+
+ // Update the info.currentValue for the next loop iteration.
+ void Step();
+
+ // Return false if loop condition is no longer satisfied.
+ bool SatisfiesLoopCondition();
+
+ // Check if the symbol is the index of a loop that's unrolled.
+ bool NeedsToReplaceSymbolWithValue(TIntermSymbol* symbol);
+
+ // Return the current value of a given loop index symbol.
+ int GetLoopIndexValue(TIntermSymbol* symbol);
+
+ void Push(TLoopIndexInfo& info);
+ void Pop();
+
+ static void MarkForLoopsWithIntegerIndicesForUnrolling(TIntermNode* root);
+
+private:
+ int getLoopIncrement(TIntermLoop* node);
+
+ int evaluateIntConstant(TIntermConstantUnion* node);
+
+ TVector<TLoopIndexInfo> mLoopIndexStack;
+};
+
+#endif
--- /dev/null
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_HASH_NAMES_H_
+#define COMPILER_HASH_NAMES_H_
+
+#include <map>
+
+#include "compiler/translator/intermediate.h"
+#include "GLSLANG/ShaderLang.h"
+
+#define HASHED_NAME_PREFIX "webgl_"
+
+typedef std::map<TPersistString, TPersistString> NameMap;
+
+#endif // COMPILER_HASH_NAMES_H_
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/InfoSink.h"
+
+void TInfoSinkBase::prefix(TPrefixType p) {
+ switch(p) {
+ case EPrefixNone:
+ break;
+ case EPrefixWarning:
+ sink.append("WARNING: ");
+ break;
+ case EPrefixError:
+ sink.append("ERROR: ");
+ break;
+ case EPrefixInternalError:
+ sink.append("INTERNAL ERROR: ");
+ break;
+ case EPrefixUnimplemented:
+ sink.append("UNIMPLEMENTED: ");
+ break;
+ case EPrefixNote:
+ sink.append("NOTE: ");
+ break;
+ default:
+ sink.append("UNKOWN ERROR: ");
+ break;
+ }
+}
+
+void TInfoSinkBase::location(int file, int line) {
+ TPersistStringStream stream;
+ if (line)
+ stream << file << ":" << line;
+ else
+ stream << file << ":? ";
+ stream << ": ";
+
+ sink.append(stream.str());
+}
+
+void TInfoSinkBase::location(const TSourceLoc& loc) {
+ location(loc.first_file, loc.first_line);
+}
+
+void TInfoSinkBase::message(TPrefixType p, const TSourceLoc& loc, const char* m) {
+ prefix(p);
+ location(loc);
+ sink.append(m);
+ sink.append("\n");
+}
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _INFOSINK_INCLUDED_
+#define _INFOSINK_INCLUDED_
+
+#include <math.h>
+#include <stdlib.h>
+#include "compiler/translator/Common.h"
+
+// Returns the fractional part of the given floating-point number.
+inline float fractionalPart(float f) {
+ float intPart = 0.0f;
+ return modff(f, &intPart);
+}
+
+//
+// TPrefixType is used to centralize how info log messages start.
+// See below.
+//
+enum TPrefixType {
+ EPrefixNone,
+ EPrefixWarning,
+ EPrefixError,
+ EPrefixInternalError,
+ EPrefixUnimplemented,
+ EPrefixNote
+};
+
+//
+// Encapsulate info logs for all objects that have them.
+//
+// The methods are a general set of tools for getting a variety of
+// messages and types inserted into the log.
+//
+class TInfoSinkBase {
+public:
+ TInfoSinkBase() {}
+
+ template <typename T>
+ TInfoSinkBase& operator<<(const T& t) {
+ TPersistStringStream stream;
+ stream << t;
+ sink.append(stream.str());
+ return *this;
+ }
+ // Override << operator for specific types. It is faster to append strings
+ // and characters directly to the sink.
+ TInfoSinkBase& operator<<(char c) {
+ sink.append(1, c);
+ return *this;
+ }
+ TInfoSinkBase& operator<<(const char* str) {
+ sink.append(str);
+ return *this;
+ }
+ TInfoSinkBase& operator<<(const TPersistString& str) {
+ sink.append(str);
+ return *this;
+ }
+ TInfoSinkBase& operator<<(const TString& str) {
+ sink.append(str.c_str());
+ return *this;
+ }
+ // Make sure floats are written with correct precision.
+ TInfoSinkBase& operator<<(float f) {
+ // Make sure that at least one decimal point is written. If a number
+ // does not have a fractional part, the default precision format does
+ // not write the decimal portion which gets interpreted as integer by
+ // the compiler.
+ TPersistStringStream stream;
+ if (fractionalPart(f) == 0.0f) {
+ stream.precision(1);
+ stream << std::showpoint << std::fixed << f;
+ } else {
+ stream.unsetf(std::ios::fixed);
+ stream.unsetf(std::ios::scientific);
+ stream.precision(8);
+ stream << f;
+ }
+ sink.append(stream.str());
+ return *this;
+ }
+ // Write boolean values as their names instead of integral value.
+ TInfoSinkBase& operator<<(bool b) {
+ const char* str = b ? "true" : "false";
+ sink.append(str);
+ return *this;
+ }
+
+ void erase() { sink.clear(); }
+ int size() { return static_cast<int>(sink.size()); }
+
+ const TPersistString& str() const { return sink; }
+ const char* c_str() const { return sink.c_str(); }
+
+ void prefix(TPrefixType p);
+ void location(int file, int line);
+ void location(const TSourceLoc& loc);
+ void message(TPrefixType p, const TSourceLoc& loc, const char* m);
+
+private:
+ TPersistString sink;
+};
+
+class TInfoSink {
+public:
+ TInfoSinkBase info;
+ TInfoSinkBase debug;
+ TInfoSinkBase obj;
+};
+
+#endif // _INFOSINK_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+//
+// Create strings that declare built-in definitions, add built-ins that
+// cannot be expressed in the files, and establish mappings between
+// built-in functions and operators.
+//
+
+#include "compiler/translator/Initialize.h"
+
+#include "compiler/translator/intermediate.h"
+
+void InsertBuiltInFunctions(ShShaderType type, ShShaderSpec spec, const ShBuiltInResources &resources, TSymbolTable &symbolTable)
+{
+ TType *float1 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 1);
+ TType *float2 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 2);
+ TType *float3 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 3);
+ TType *float4 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 4);
+
+ TType *int2 = new TType(EbtInt, EbpUndefined, EvqGlobal, 2);
+ TType *int3 = new TType(EbtInt, EbpUndefined, EvqGlobal, 3);
+ TType *int4 = new TType(EbtInt, EbpUndefined, EvqGlobal, 4);
+
+ //
+ // Angle and Trigonometric Functions.
+ //
+ symbolTable.insertBuiltIn(float1, "radians", float1);
+ symbolTable.insertBuiltIn(float2, "radians", float2);
+ symbolTable.insertBuiltIn(float3, "radians", float3);
+ symbolTable.insertBuiltIn(float4, "radians", float4);
+
+ symbolTable.insertBuiltIn(float1, "degrees", float1);
+ symbolTable.insertBuiltIn(float2, "degrees", float2);
+ symbolTable.insertBuiltIn(float3, "degrees", float3);
+ symbolTable.insertBuiltIn(float4, "degrees", float4);
+
+ symbolTable.insertBuiltIn(float1, "sin", float1);
+ symbolTable.insertBuiltIn(float2, "sin", float2);
+ symbolTable.insertBuiltIn(float3, "sin", float3);
+ symbolTable.insertBuiltIn(float4, "sin", float4);
+
+ symbolTable.insertBuiltIn(float1, "cos", float1);
+ symbolTable.insertBuiltIn(float2, "cos", float2);
+ symbolTable.insertBuiltIn(float3, "cos", float3);
+ symbolTable.insertBuiltIn(float4, "cos", float4);
+
+ symbolTable.insertBuiltIn(float1, "tan", float1);
+ symbolTable.insertBuiltIn(float2, "tan", float2);
+ symbolTable.insertBuiltIn(float3, "tan", float3);
+ symbolTable.insertBuiltIn(float4, "tan", float4);
+
+ symbolTable.insertBuiltIn(float1, "asin", float1);
+ symbolTable.insertBuiltIn(float2, "asin", float2);
+ symbolTable.insertBuiltIn(float3, "asin", float3);
+ symbolTable.insertBuiltIn(float4, "asin", float4);
+
+ symbolTable.insertBuiltIn(float1, "acos", float1);
+ symbolTable.insertBuiltIn(float2, "acos", float2);
+ symbolTable.insertBuiltIn(float3, "acos", float3);
+ symbolTable.insertBuiltIn(float4, "acos", float4);
+
+ symbolTable.insertBuiltIn(float1, "atan", float1, float1);
+ symbolTable.insertBuiltIn(float2, "atan", float2, float2);
+ symbolTable.insertBuiltIn(float3, "atan", float3, float3);
+ symbolTable.insertBuiltIn(float4, "atan", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "atan", float1);
+ symbolTable.insertBuiltIn(float2, "atan", float2);
+ symbolTable.insertBuiltIn(float3, "atan", float3);
+ symbolTable.insertBuiltIn(float4, "atan", float4);
+
+ //
+ // Exponential Functions.
+ //
+ symbolTable.insertBuiltIn(float1, "pow", float1, float1);
+ symbolTable.insertBuiltIn(float2, "pow", float2, float2);
+ symbolTable.insertBuiltIn(float3, "pow", float3, float3);
+ symbolTable.insertBuiltIn(float4, "pow", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "exp", float1);
+ symbolTable.insertBuiltIn(float2, "exp", float2);
+ symbolTable.insertBuiltIn(float3, "exp", float3);
+ symbolTable.insertBuiltIn(float4, "exp", float4);
+
+ symbolTable.insertBuiltIn(float1, "log", float1);
+ symbolTable.insertBuiltIn(float2, "log", float2);
+ symbolTable.insertBuiltIn(float3, "log", float3);
+ symbolTable.insertBuiltIn(float4, "log", float4);
+
+ symbolTable.insertBuiltIn(float1, "exp2", float1);
+ symbolTable.insertBuiltIn(float2, "exp2", float2);
+ symbolTable.insertBuiltIn(float3, "exp2", float3);
+ symbolTable.insertBuiltIn(float4, "exp2", float4);
+
+ symbolTable.insertBuiltIn(float1, "log2", float1);
+ symbolTable.insertBuiltIn(float2, "log2", float2);
+ symbolTable.insertBuiltIn(float3, "log2", float3);
+ symbolTable.insertBuiltIn(float4, "log2", float4);
+
+ symbolTable.insertBuiltIn(float1, "sqrt", float1);
+ symbolTable.insertBuiltIn(float2, "sqrt", float2);
+ symbolTable.insertBuiltIn(float3, "sqrt", float3);
+ symbolTable.insertBuiltIn(float4, "sqrt", float4);
+
+ symbolTable.insertBuiltIn(float1, "inversesqrt", float1);
+ symbolTable.insertBuiltIn(float2, "inversesqrt", float2);
+ symbolTable.insertBuiltIn(float3, "inversesqrt", float3);
+ symbolTable.insertBuiltIn(float4, "inversesqrt", float4);
+
+ //
+ // Common Functions.
+ //
+ symbolTable.insertBuiltIn(float1, "abs", float1);
+ symbolTable.insertBuiltIn(float2, "abs", float2);
+ symbolTable.insertBuiltIn(float3, "abs", float3);
+ symbolTable.insertBuiltIn(float4, "abs", float4);
+
+ symbolTable.insertBuiltIn(float1, "sign", float1);
+ symbolTable.insertBuiltIn(float2, "sign", float2);
+ symbolTable.insertBuiltIn(float3, "sign", float3);
+ symbolTable.insertBuiltIn(float4, "sign", float4);
+
+ symbolTable.insertBuiltIn(float1, "floor", float1);
+ symbolTable.insertBuiltIn(float2, "floor", float2);
+ symbolTable.insertBuiltIn(float3, "floor", float3);
+ symbolTable.insertBuiltIn(float4, "floor", float4);
+
+ symbolTable.insertBuiltIn(float1, "ceil", float1);
+ symbolTable.insertBuiltIn(float2, "ceil", float2);
+ symbolTable.insertBuiltIn(float3, "ceil", float3);
+ symbolTable.insertBuiltIn(float4, "ceil", float4);
+
+ symbolTable.insertBuiltIn(float1, "fract", float1);
+ symbolTable.insertBuiltIn(float2, "fract", float2);
+ symbolTable.insertBuiltIn(float3, "fract", float3);
+ symbolTable.insertBuiltIn(float4, "fract", float4);
+
+ symbolTable.insertBuiltIn(float1, "mod", float1, float1);
+ symbolTable.insertBuiltIn(float2, "mod", float2, float1);
+ symbolTable.insertBuiltIn(float3, "mod", float3, float1);
+ symbolTable.insertBuiltIn(float4, "mod", float4, float1);
+ symbolTable.insertBuiltIn(float2, "mod", float2, float2);
+ symbolTable.insertBuiltIn(float3, "mod", float3, float3);
+ symbolTable.insertBuiltIn(float4, "mod", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "min", float1, float1);
+ symbolTable.insertBuiltIn(float2, "min", float2, float1);
+ symbolTable.insertBuiltIn(float3, "min", float3, float1);
+ symbolTable.insertBuiltIn(float4, "min", float4, float1);
+ symbolTable.insertBuiltIn(float2, "min", float2, float2);
+ symbolTable.insertBuiltIn(float3, "min", float3, float3);
+ symbolTable.insertBuiltIn(float4, "min", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "max", float1, float1);
+ symbolTable.insertBuiltIn(float2, "max", float2, float1);
+ symbolTable.insertBuiltIn(float3, "max", float3, float1);
+ symbolTable.insertBuiltIn(float4, "max", float4, float1);
+ symbolTable.insertBuiltIn(float2, "max", float2, float2);
+ symbolTable.insertBuiltIn(float3, "max", float3, float3);
+ symbolTable.insertBuiltIn(float4, "max", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "clamp", float1, float1, float1);
+ symbolTable.insertBuiltIn(float2, "clamp", float2, float1, float1);
+ symbolTable.insertBuiltIn(float3, "clamp", float3, float1, float1);
+ symbolTable.insertBuiltIn(float4, "clamp", float4, float1, float1);
+ symbolTable.insertBuiltIn(float2, "clamp", float2, float2, float2);
+ symbolTable.insertBuiltIn(float3, "clamp", float3, float3, float3);
+ symbolTable.insertBuiltIn(float4, "clamp", float4, float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "mix", float1, float1, float1);
+ symbolTable.insertBuiltIn(float2, "mix", float2, float2, float1);
+ symbolTable.insertBuiltIn(float3, "mix", float3, float3, float1);
+ symbolTable.insertBuiltIn(float4, "mix", float4, float4, float1);
+ symbolTable.insertBuiltIn(float2, "mix", float2, float2, float2);
+ symbolTable.insertBuiltIn(float3, "mix", float3, float3, float3);
+ symbolTable.insertBuiltIn(float4, "mix", float4, float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "step", float1, float1);
+ symbolTable.insertBuiltIn(float2, "step", float2, float2);
+ symbolTable.insertBuiltIn(float3, "step", float3, float3);
+ symbolTable.insertBuiltIn(float4, "step", float4, float4);
+ symbolTable.insertBuiltIn(float2, "step", float1, float2);
+ symbolTable.insertBuiltIn(float3, "step", float1, float3);
+ symbolTable.insertBuiltIn(float4, "step", float1, float4);
+
+ symbolTable.insertBuiltIn(float1, "smoothstep", float1, float1, float1);
+ symbolTable.insertBuiltIn(float2, "smoothstep", float2, float2, float2);
+ symbolTable.insertBuiltIn(float3, "smoothstep", float3, float3, float3);
+ symbolTable.insertBuiltIn(float4, "smoothstep", float4, float4, float4);
+ symbolTable.insertBuiltIn(float2, "smoothstep", float1, float1, float2);
+ symbolTable.insertBuiltIn(float3, "smoothstep", float1, float1, float3);
+ symbolTable.insertBuiltIn(float4, "smoothstep", float1, float1, float4);
+
+ //
+ // Geometric Functions.
+ //
+ symbolTable.insertBuiltIn(float1, "length", float1);
+ symbolTable.insertBuiltIn(float1, "length", float2);
+ symbolTable.insertBuiltIn(float1, "length", float3);
+ symbolTable.insertBuiltIn(float1, "length", float4);
+
+ symbolTable.insertBuiltIn(float1, "distance", float1, float1);
+ symbolTable.insertBuiltIn(float1, "distance", float2, float2);
+ symbolTable.insertBuiltIn(float1, "distance", float3, float3);
+ symbolTable.insertBuiltIn(float1, "distance", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "dot", float1, float1);
+ symbolTable.insertBuiltIn(float1, "dot", float2, float2);
+ symbolTable.insertBuiltIn(float1, "dot", float3, float3);
+ symbolTable.insertBuiltIn(float1, "dot", float4, float4);
+
+ symbolTable.insertBuiltIn(float3, "cross", float3, float3);
+ symbolTable.insertBuiltIn(float1, "normalize", float1);
+ symbolTable.insertBuiltIn(float2, "normalize", float2);
+ symbolTable.insertBuiltIn(float3, "normalize", float3);
+ symbolTable.insertBuiltIn(float4, "normalize", float4);
+
+ symbolTable.insertBuiltIn(float1, "faceforward", float1, float1, float1);
+ symbolTable.insertBuiltIn(float2, "faceforward", float2, float2, float2);
+ symbolTable.insertBuiltIn(float3, "faceforward", float3, float3, float3);
+ symbolTable.insertBuiltIn(float4, "faceforward", float4, float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "reflect", float1, float1);
+ symbolTable.insertBuiltIn(float2, "reflect", float2, float2);
+ symbolTable.insertBuiltIn(float3, "reflect", float3, float3);
+ symbolTable.insertBuiltIn(float4, "reflect", float4, float4);
+
+ symbolTable.insertBuiltIn(float1, "refract", float1, float1, float1);
+ symbolTable.insertBuiltIn(float2, "refract", float2, float2, float1);
+ symbolTable.insertBuiltIn(float3, "refract", float3, float3, float1);
+ symbolTable.insertBuiltIn(float4, "refract", float4, float4, float1);
+
+ TType *mat2 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 2, true);
+ TType *mat3 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 3, true);
+ TType *mat4 = new TType(EbtFloat, EbpUndefined, EvqGlobal, 4, true);
+
+ //
+ // Matrix Functions.
+ //
+ symbolTable.insertBuiltIn(mat2, "matrixCompMult", mat2, mat2);
+ symbolTable.insertBuiltIn(mat3, "matrixCompMult", mat3, mat3);
+ symbolTable.insertBuiltIn(mat4, "matrixCompMult", mat4, mat4);
+
+ TType *bool1 = new TType(EbtBool, EbpUndefined, EvqGlobal, 1);
+ TType *bool2 = new TType(EbtBool, EbpUndefined, EvqGlobal, 2);
+ TType *bool3 = new TType(EbtBool, EbpUndefined, EvqGlobal, 3);
+ TType *bool4 = new TType(EbtBool, EbpUndefined, EvqGlobal, 4);
+
+ //
+ // Vector relational functions.
+ //
+ symbolTable.insertBuiltIn(bool2, "lessThan", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "lessThan", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "lessThan", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "lessThan", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "lessThan", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "lessThan", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "lessThanEqual", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "lessThanEqual", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "lessThanEqual", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "lessThanEqual", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "lessThanEqual", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "lessThanEqual", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "greaterThan", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "greaterThan", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "greaterThan", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "greaterThan", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "greaterThan", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "greaterThan", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "greaterThanEqual", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "greaterThanEqual", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "greaterThanEqual", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "greaterThanEqual", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "greaterThanEqual", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "greaterThanEqual", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "equal", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "equal", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "equal", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "equal", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "equal", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "equal", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "equal", bool2, bool2);
+ symbolTable.insertBuiltIn(bool3, "equal", bool3, bool3);
+ symbolTable.insertBuiltIn(bool4, "equal", bool4, bool4);
+
+ symbolTable.insertBuiltIn(bool2, "notEqual", float2, float2);
+ symbolTable.insertBuiltIn(bool3, "notEqual", float3, float3);
+ symbolTable.insertBuiltIn(bool4, "notEqual", float4, float4);
+
+ symbolTable.insertBuiltIn(bool2, "notEqual", int2, int2);
+ symbolTable.insertBuiltIn(bool3, "notEqual", int3, int3);
+ symbolTable.insertBuiltIn(bool4, "notEqual", int4, int4);
+
+ symbolTable.insertBuiltIn(bool2, "notEqual", bool2, bool2);
+ symbolTable.insertBuiltIn(bool3, "notEqual", bool3, bool3);
+ symbolTable.insertBuiltIn(bool4, "notEqual", bool4, bool4);
+
+ symbolTable.insertBuiltIn(bool1, "any", bool2);
+ symbolTable.insertBuiltIn(bool1, "any", bool3);
+ symbolTable.insertBuiltIn(bool1, "any", bool4);
+
+ symbolTable.insertBuiltIn(bool1, "all", bool2);
+ symbolTable.insertBuiltIn(bool1, "all", bool3);
+ symbolTable.insertBuiltIn(bool1, "all", bool4);
+
+ symbolTable.insertBuiltIn(bool2, "not", bool2);
+ symbolTable.insertBuiltIn(bool3, "not", bool3);
+ symbolTable.insertBuiltIn(bool4, "not", bool4);
+
+ TType *sampler2D = new TType(EbtSampler2D, EbpUndefined, EvqGlobal, 1);
+ TType *samplerCube = new TType(EbtSamplerCube, EbpUndefined, EvqGlobal, 1);
+
+ //
+ // Texture Functions for GLSL ES 1.0
+ //
+ symbolTable.insertBuiltIn(float4, "texture2D", sampler2D, float2);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", sampler2D, float3);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", sampler2D, float4);
+ symbolTable.insertBuiltIn(float4, "textureCube", samplerCube, float3);
+
+ if (resources.OES_EGL_image_external)
+ {
+ TType *samplerExternalOES = new TType(EbtSamplerExternalOES, EbpUndefined, EvqGlobal, 1);
+
+ symbolTable.insertBuiltIn(float4, "texture2D", samplerExternalOES, float2);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", samplerExternalOES, float3);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", samplerExternalOES, float4);
+ }
+
+ if (resources.ARB_texture_rectangle)
+ {
+ TType *sampler2DRect = new TType(EbtSampler2DRect, EbpUndefined, EvqGlobal, 1);
+
+ symbolTable.insertBuiltIn(float4, "texture2DRect", sampler2DRect, float2);
+ symbolTable.insertBuiltIn(float4, "texture2DRectProj", sampler2DRect, float3);
+ symbolTable.insertBuiltIn(float4, "texture2DRectProj", sampler2DRect, float4);
+ }
+
+ if (type == SH_FRAGMENT_SHADER)
+ {
+ symbolTable.insertBuiltIn(float4, "texture2D", sampler2D, float2, float1);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", sampler2D, float3, float1);
+ symbolTable.insertBuiltIn(float4, "texture2DProj", sampler2D, float4, float1);
+ symbolTable.insertBuiltIn(float4, "textureCube", samplerCube, float3, float1);
+
+ if (resources.OES_standard_derivatives)
+ {
+ symbolTable.insertBuiltIn(float1, "dFdx", float1);
+ symbolTable.insertBuiltIn(float2, "dFdx", float2);
+ symbolTable.insertBuiltIn(float3, "dFdx", float3);
+ symbolTable.insertBuiltIn(float4, "dFdx", float4);
+
+ symbolTable.insertBuiltIn(float1, "dFdy", float1);
+ symbolTable.insertBuiltIn(float2, "dFdy", float2);
+ symbolTable.insertBuiltIn(float3, "dFdy", float3);
+ symbolTable.insertBuiltIn(float4, "dFdy", float4);
+
+ symbolTable.insertBuiltIn(float1, "fwidth", float1);
+ symbolTable.insertBuiltIn(float2, "fwidth", float2);
+ symbolTable.insertBuiltIn(float3, "fwidth", float3);
+ symbolTable.insertBuiltIn(float4, "fwidth", float4);
+ }
+ }
+
+ if(type == SH_VERTEX_SHADER)
+ {
+ symbolTable.insertBuiltIn(float4, "texture2DLod", sampler2D, float2, float1);
+ symbolTable.insertBuiltIn(float4, "texture2DProjLod", sampler2D, float3, float1);
+ symbolTable.insertBuiltIn(float4, "texture2DProjLod", sampler2D, float4, float1);
+ symbolTable.insertBuiltIn(float4, "textureCubeLod", samplerCube, float3, float1);
+ }
+
+ //
+ // Depth range in window coordinates
+ //
+ TFieldList *fields = NewPoolTFieldList();
+ TField *near = new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1), NewPoolTString("near"));
+ TField *far = new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1), NewPoolTString("far"));
+ TField *diff = new TField(new TType(EbtFloat, EbpHigh, EvqGlobal, 1), NewPoolTString("diff"));
+ fields->push_back(near);
+ fields->push_back(far);
+ fields->push_back(diff);
+ TStructure *depthRangeStruct = new TStructure(NewPoolTString("gl_DepthRangeParameters"), fields);
+ TVariable *depthRangeParameters = new TVariable(&depthRangeStruct->name(), depthRangeStruct, true);
+ symbolTable.insert(*depthRangeParameters);
+ TVariable *depthRange = new TVariable(NewPoolTString("gl_DepthRange"), TType(depthRangeStruct));
+ depthRange->setQualifier(EvqUniform);
+ symbolTable.insert(*depthRange);
+
+ //
+ // Implementation dependent built-in constants.
+ //
+ symbolTable.insertConstInt("gl_MaxVertexAttribs", resources.MaxVertexAttribs);
+ symbolTable.insertConstInt("gl_MaxVertexUniformVectors", resources.MaxVertexUniformVectors);
+ symbolTable.insertConstInt("gl_MaxVaryingVectors", resources.MaxVaryingVectors);
+ symbolTable.insertConstInt("gl_MaxVertexTextureImageUnits", resources.MaxVertexTextureImageUnits);
+ symbolTable.insertConstInt("gl_MaxCombinedTextureImageUnits", resources.MaxCombinedTextureImageUnits);
+ symbolTable.insertConstInt("gl_MaxTextureImageUnits", resources.MaxTextureImageUnits);
+ symbolTable.insertConstInt("gl_MaxFragmentUniformVectors", resources.MaxFragmentUniformVectors);
+
+ if (spec != SH_CSS_SHADERS_SPEC)
+ {
+ symbolTable.insertConstInt("gl_MaxDrawBuffers", resources.MaxDrawBuffers);
+ }
+}
+
+void IdentifyBuiltIns(ShShaderType type, ShShaderSpec spec,
+ const ShBuiltInResources &resources,
+ TSymbolTable &symbolTable)
+{
+ //
+ // First, insert some special built-in variables that are not in
+ // the built-in header files.
+ //
+ switch(type) {
+ case SH_FRAGMENT_SHADER:
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FragCoord"), TType(EbtFloat, EbpMedium, EvqFragCoord, 4)));
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FrontFacing"), TType(EbtBool, EbpUndefined, EvqFrontFacing, 1)));
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_PointCoord"), TType(EbtFloat, EbpMedium, EvqPointCoord, 2)));
+
+ //
+ // In CSS Shaders, gl_FragColor, gl_FragData, and gl_MaxDrawBuffers are not available.
+ // Instead, css_MixColor and css_ColorMatrix are available.
+ //
+ if (spec != SH_CSS_SHADERS_SPEC) {
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FragColor"), TType(EbtFloat, EbpMedium, EvqFragColor, 4)));
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FragData[gl_MaxDrawBuffers]"), TType(EbtFloat, EbpMedium, EvqFragData, 4)));
+ if (resources.EXT_frag_depth) {
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FragDepthEXT"), TType(EbtFloat, resources.FragmentPrecisionHigh ? EbpHigh : EbpMedium, EvqFragDepth, 1)));
+ symbolTable.relateToExtension("gl_FragDepthEXT", "GL_EXT_frag_depth");
+ }
+ } else {
+ symbolTable.insert(*new TVariable(NewPoolTString("css_MixColor"), TType(EbtFloat, EbpMedium, EvqGlobal, 4)));
+ symbolTable.insert(*new TVariable(NewPoolTString("css_ColorMatrix"), TType(EbtFloat, EbpMedium, EvqGlobal, 4, true)));
+ }
+
+ break;
+
+ case SH_VERTEX_SHADER:
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_Position"), TType(EbtFloat, EbpHigh, EvqPosition, 4)));
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_PointSize"), TType(EbtFloat, EbpMedium, EvqPointSize, 1)));
+ break;
+
+ default: assert(false && "Language not supported");
+ }
+
+ //
+ // Next, identify which built-ins from the already loaded headers have
+ // a mapping to an operator. Those that are not identified as such are
+ // expected to be resolved through a library of functions, versus as
+ // operations.
+ //
+ symbolTable.relateToOperator("matrixCompMult", EOpMul);
+
+ symbolTable.relateToOperator("equal", EOpVectorEqual);
+ symbolTable.relateToOperator("notEqual", EOpVectorNotEqual);
+ symbolTable.relateToOperator("lessThan", EOpLessThan);
+ symbolTable.relateToOperator("greaterThan", EOpGreaterThan);
+ symbolTable.relateToOperator("lessThanEqual", EOpLessThanEqual);
+ symbolTable.relateToOperator("greaterThanEqual", EOpGreaterThanEqual);
+
+ symbolTable.relateToOperator("radians", EOpRadians);
+ symbolTable.relateToOperator("degrees", EOpDegrees);
+ symbolTable.relateToOperator("sin", EOpSin);
+ symbolTable.relateToOperator("cos", EOpCos);
+ symbolTable.relateToOperator("tan", EOpTan);
+ symbolTable.relateToOperator("asin", EOpAsin);
+ symbolTable.relateToOperator("acos", EOpAcos);
+ symbolTable.relateToOperator("atan", EOpAtan);
+
+ symbolTable.relateToOperator("pow", EOpPow);
+ symbolTable.relateToOperator("exp2", EOpExp2);
+ symbolTable.relateToOperator("log", EOpLog);
+ symbolTable.relateToOperator("exp", EOpExp);
+ symbolTable.relateToOperator("log2", EOpLog2);
+ symbolTable.relateToOperator("sqrt", EOpSqrt);
+ symbolTable.relateToOperator("inversesqrt", EOpInverseSqrt);
+
+ symbolTable.relateToOperator("abs", EOpAbs);
+ symbolTable.relateToOperator("sign", EOpSign);
+ symbolTable.relateToOperator("floor", EOpFloor);
+ symbolTable.relateToOperator("ceil", EOpCeil);
+ symbolTable.relateToOperator("fract", EOpFract);
+ symbolTable.relateToOperator("mod", EOpMod);
+ symbolTable.relateToOperator("min", EOpMin);
+ symbolTable.relateToOperator("max", EOpMax);
+ symbolTable.relateToOperator("clamp", EOpClamp);
+ symbolTable.relateToOperator("mix", EOpMix);
+ symbolTable.relateToOperator("step", EOpStep);
+ symbolTable.relateToOperator("smoothstep", EOpSmoothStep);
+
+ symbolTable.relateToOperator("length", EOpLength);
+ symbolTable.relateToOperator("distance", EOpDistance);
+ symbolTable.relateToOperator("dot", EOpDot);
+ symbolTable.relateToOperator("cross", EOpCross);
+ symbolTable.relateToOperator("normalize", EOpNormalize);
+ symbolTable.relateToOperator("faceforward", EOpFaceForward);
+ symbolTable.relateToOperator("reflect", EOpReflect);
+ symbolTable.relateToOperator("refract", EOpRefract);
+
+ symbolTable.relateToOperator("any", EOpAny);
+ symbolTable.relateToOperator("all", EOpAll);
+ symbolTable.relateToOperator("not", EOpVectorLogicalNot);
+
+ // Map language-specific operators.
+ switch(type) {
+ case SH_VERTEX_SHADER:
+ break;
+ case SH_FRAGMENT_SHADER:
+ if (resources.OES_standard_derivatives) {
+ symbolTable.relateToOperator("dFdx", EOpDFdx);
+ symbolTable.relateToOperator("dFdy", EOpDFdy);
+ symbolTable.relateToOperator("fwidth", EOpFwidth);
+
+ symbolTable.relateToExtension("dFdx", "GL_OES_standard_derivatives");
+ symbolTable.relateToExtension("dFdy", "GL_OES_standard_derivatives");
+ symbolTable.relateToExtension("fwidth", "GL_OES_standard_derivatives");
+ }
+ break;
+ default: break;
+ }
+
+ // Finally add resource-specific variables.
+ switch(type) {
+ case SH_FRAGMENT_SHADER:
+ if (spec != SH_CSS_SHADERS_SPEC) {
+ // Set up gl_FragData. The array size.
+ TType fragData(EbtFloat, EbpMedium, EvqFragData, 4, false, true);
+ fragData.setArraySize(resources.MaxDrawBuffers);
+ symbolTable.insert(*new TVariable(NewPoolTString("gl_FragData"), fragData));
+ }
+ break;
+ default: break;
+ }
+}
+
+void InitExtensionBehavior(const ShBuiltInResources& resources,
+ TExtensionBehavior& extBehavior)
+{
+ if (resources.OES_standard_derivatives)
+ extBehavior["GL_OES_standard_derivatives"] = EBhUndefined;
+ if (resources.OES_EGL_image_external)
+ extBehavior["GL_OES_EGL_image_external"] = EBhUndefined;
+ if (resources.ARB_texture_rectangle)
+ extBehavior["GL_ARB_texture_rectangle"] = EBhUndefined;
+ if (resources.EXT_draw_buffers)
+ extBehavior["GL_EXT_draw_buffers"] = EBhUndefined;
+ if (resources.EXT_frag_depth)
+ extBehavior["GL_EXT_frag_depth"] = EBhUndefined;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _INITIALIZE_INCLUDED_
+#define _INITIALIZE_INCLUDED_
+
+#include "compiler/translator/Common.h"
+#include "compiler/translator/ShHandle.h"
+#include "compiler/translator/SymbolTable.h"
+
+void InsertBuiltInFunctions(ShShaderType type, ShShaderSpec spec, const ShBuiltInResources &resources, TSymbolTable &table);
+
+void IdentifyBuiltIns(ShShaderType type, ShShaderSpec spec,
+ const ShBuiltInResources& resources,
+ TSymbolTable& symbolTable);
+
+void InitExtensionBehavior(const ShBuiltInResources& resources,
+ TExtensionBehavior& extensionBehavior);
+
+#endif // _INITIALIZE_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/InitializeDll.h"
+
+#include "compiler/translator/InitializeGlobals.h"
+#include "compiler/translator/InitializeParseContext.h"
+#include "compiler/translator/osinclude.h"
+
+bool InitProcess()
+{
+ if (!InitializePoolIndex()) {
+ assert(0 && "InitProcess(): Failed to initalize global pool");
+ return false;
+ }
+
+ if (!InitializeParseContextIndex()) {
+ assert(0 && "InitProcess(): Failed to initalize parse context");
+ return false;
+ }
+
+ return true;
+}
+
+void DetachProcess()
+{
+ FreeParseContextIndex();
+ FreePoolIndex();
+}
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+#ifndef __INITIALIZEDLL_H
+#define __INITIALIZEDLL_H
+
+bool InitProcess();
+void DetachProcess();
+
+#endif // __INITIALIZEDLL_H
+
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef __INITIALIZE_GLOBALS_INCLUDED_
+#define __INITIALIZE_GLOBALS_INCLUDED_
+
+bool InitializePoolIndex();
+void FreePoolIndex();
+
+#endif // __INITIALIZE_GLOBALS_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/InitializeParseContext.h"
+
+#include "compiler/translator/osinclude.h"
+
+OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX;
+
+bool InitializeParseContextIndex()
+{
+ assert(GlobalParseContextIndex == OS_INVALID_TLS_INDEX);
+
+ GlobalParseContextIndex = OS_AllocTLSIndex();
+ return GlobalParseContextIndex != OS_INVALID_TLS_INDEX;
+}
+
+void FreeParseContextIndex()
+{
+ assert(GlobalParseContextIndex != OS_INVALID_TLS_INDEX);
+
+ OS_FreeTLSIndex(GlobalParseContextIndex);
+ GlobalParseContextIndex = OS_INVALID_TLS_INDEX;
+}
+
+void SetGlobalParseContext(TParseContext* context)
+{
+ assert(GlobalParseContextIndex != OS_INVALID_TLS_INDEX);
+ OS_SetTLSValue(GlobalParseContextIndex, context);
+}
+
+TParseContext* GetGlobalParseContext()
+{
+ assert(GlobalParseContextIndex != OS_INVALID_TLS_INDEX);
+ return static_cast<TParseContext*>(OS_GetTLSValue(GlobalParseContextIndex));
+}
+
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef __INITIALIZE_PARSE_CONTEXT_INCLUDED_
+#define __INITIALIZE_PARSE_CONTEXT_INCLUDED_
+
+bool InitializeParseContextIndex();
+void FreeParseContextIndex();
+
+struct TParseContext;
+extern void SetGlobalParseContext(TParseContext* context);
+extern TParseContext* GetGlobalParseContext();
+
+#endif // __INITIALIZE_PARSE_CONTEXT_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/InitializeVariables.h"
+#include "compiler/translator/compilerdebug.h"
+
+namespace
+{
+
+TIntermConstantUnion* constructFloatConstUnionNode(const TType& type)
+{
+ TType myType = type;
+ unsigned char size = myType.getNominalSize();
+ if (myType.isMatrix())
+ size *= size;
+ ConstantUnion *u = new ConstantUnion[size];
+ for (int ii = 0; ii < size; ++ii)
+ u[ii].setFConst(0.0f);
+
+ myType.clearArrayness();
+ myType.setQualifier(EvqConst);
+ TIntermConstantUnion *node = new TIntermConstantUnion(u, myType);
+ return node;
+}
+
+TIntermConstantUnion* constructIndexNode(int index)
+{
+ ConstantUnion *u = new ConstantUnion[1];
+ u[0].setIConst(index);
+
+ TType type(EbtInt, EbpUndefined, EvqConst, 1);
+ TIntermConstantUnion *node = new TIntermConstantUnion(u, type);
+ return node;
+}
+
+} // namespace anonymous
+
+bool InitializeVariables::visitAggregate(Visit visit, TIntermAggregate* node)
+{
+ bool visitChildren = !mCodeInserted;
+ switch (node->getOp())
+ {
+ case EOpSequence:
+ break;
+ case EOpFunction:
+ {
+ // Function definition.
+ ASSERT(visit == PreVisit);
+ if (node->getName() == "main(")
+ {
+ TIntermSequence &sequence = node->getSequence();
+ ASSERT((sequence.size() == 1) || (sequence.size() == 2));
+ TIntermAggregate *body = NULL;
+ if (sequence.size() == 1)
+ {
+ body = new TIntermAggregate(EOpSequence);
+ sequence.push_back(body);
+ }
+ else
+ {
+ body = sequence[1]->getAsAggregate();
+ }
+ ASSERT(body);
+ insertInitCode(body->getSequence());
+ mCodeInserted = true;
+ }
+ break;
+ }
+ default:
+ visitChildren = false;
+ break;
+ }
+ return visitChildren;
+}
+
+void InitializeVariables::insertInitCode(TIntermSequence& sequence)
+{
+ for (size_t ii = 0; ii < mVariables.size(); ++ii)
+ {
+ const InitVariableInfo& varInfo = mVariables[ii];
+
+ if (varInfo.type.isArray())
+ {
+ for (int index = varInfo.type.getArraySize() - 1; index >= 0; --index)
+ {
+ TIntermBinary *assign = new TIntermBinary(EOpAssign);
+ sequence.insert(sequence.begin(), assign);
+
+ TIntermBinary *indexDirect = new TIntermBinary(EOpIndexDirect);
+ TIntermSymbol *symbol = new TIntermSymbol(0, varInfo.name, varInfo.type);
+ indexDirect->setLeft(symbol);
+ TIntermConstantUnion *indexNode = constructIndexNode(index);
+ indexDirect->setRight(indexNode);
+
+ assign->setLeft(indexDirect);
+
+ TIntermConstantUnion *zeroConst = constructFloatConstUnionNode(varInfo.type);
+ assign->setRight(zeroConst);
+ }
+ }
+ else
+ {
+ TIntermBinary *assign = new TIntermBinary(EOpAssign);
+ sequence.insert(sequence.begin(), assign);
+ TIntermSymbol *symbol = new TIntermSymbol(0, varInfo.name, varInfo.type);
+ assign->setLeft(symbol);
+ TIntermConstantUnion *zeroConst = constructFloatConstUnionNode(varInfo.type);
+ assign->setRight(zeroConst);
+ }
+
+ }
+}
+
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_INITIALIZE_VARIABLES_H_
+#define COMPILER_INITIALIZE_VARIABLES_H_
+
+#include "compiler/translator/intermediate.h"
+
+class InitializeVariables : public TIntermTraverser
+{
+ public:
+ struct InitVariableInfo
+ {
+ TString name;
+ TType type;
+
+ InitVariableInfo(const TString& _name, const TType& _type)
+ : name(_name),
+ type(_type)
+ {
+ }
+ };
+ typedef TVector<InitVariableInfo> InitVariableInfoList;
+
+ InitializeVariables(const InitVariableInfoList& vars)
+ : mCodeInserted(false),
+ mVariables(vars)
+ {
+ }
+
+ protected:
+ virtual bool visitBinary(Visit visit, TIntermBinary* node) { return false; }
+ virtual bool visitUnary(Visit visit, TIntermUnary* node) { return false; }
+ virtual bool visitSelection(Visit visit, TIntermSelection* node) { return false; }
+ virtual bool visitLoop(Visit visit, TIntermLoop* node) { return false; }
+ virtual bool visitBranch(Visit visit, TIntermBranch* node) { return false; }
+
+ virtual bool visitAggregate(Visit visit, TIntermAggregate* node);
+
+ private:
+ void insertInitCode(TIntermSequence& sequence);
+
+ InitVariableInfoList mVariables;
+ bool mCodeInserted;
+};
+
+#endif // COMPILER_INITIALIZE_VARIABLES_H_
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/intermediate.h"
+
+//
+// Traverse the intermediate representation tree, and
+// call a node type specific function for each node.
+// Done recursively through the member function Traverse().
+// Node types can be skipped if their function to call is 0,
+// but their subtree will still be traversed.
+// Nodes with children can have their whole subtree skipped
+// if preVisit is turned on and the type specific function
+// returns false.
+//
+// preVisit, postVisit, and rightToLeft control what order
+// nodes are visited in.
+//
+
+//
+// Traversal functions for terminals are straighforward....
+//
+void TIntermSymbol::traverse(TIntermTraverser *it)
+{
+ it->visitSymbol(this);
+}
+
+void TIntermConstantUnion::traverse(TIntermTraverser *it)
+{
+ it->visitConstantUnion(this);
+}
+
+//
+// Traverse a binary node.
+//
+void TIntermBinary::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ //
+ // visit the node before children if pre-visiting.
+ //
+ if (it->preVisit)
+ visit = it->visitBinary(PreVisit, this);
+
+ //
+ // Visit the children, in the right order.
+ //
+ if (visit)
+ {
+ it->incrementDepth(this);
+
+ if (it->rightToLeft)
+ {
+ if (right)
+ right->traverse(it);
+
+ if (it->inVisit)
+ visit = it->visitBinary(InVisit, this);
+
+ if (visit && left)
+ left->traverse(it);
+ }
+ else
+ {
+ if (left)
+ left->traverse(it);
+
+ if (it->inVisit)
+ visit = it->visitBinary(InVisit, this);
+
+ if (visit && right)
+ right->traverse(it);
+ }
+
+ it->decrementDepth();
+ }
+
+ //
+ // Visit the node after the children, if requested and the traversal
+ // hasn't been cancelled yet.
+ //
+ if (visit && it->postVisit)
+ it->visitBinary(PostVisit, this);
+}
+
+//
+// Traverse a unary node. Same comments in binary node apply here.
+//
+void TIntermUnary::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ if (it->preVisit)
+ visit = it->visitUnary(PreVisit, this);
+
+ if (visit) {
+ it->incrementDepth(this);
+ operand->traverse(it);
+ it->decrementDepth();
+ }
+
+ if (visit && it->postVisit)
+ it->visitUnary(PostVisit, this);
+}
+
+//
+// Traverse an aggregate node. Same comments in binary node apply here.
+//
+void TIntermAggregate::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ if (it->preVisit)
+ visit = it->visitAggregate(PreVisit, this);
+
+ if (visit)
+ {
+ it->incrementDepth(this);
+
+ if (it->rightToLeft)
+ {
+ for (TIntermSequence::reverse_iterator sit = sequence.rbegin(); sit != sequence.rend(); sit++)
+ {
+ (*sit)->traverse(it);
+
+ if (visit && it->inVisit)
+ {
+ if (*sit != sequence.front())
+ visit = it->visitAggregate(InVisit, this);
+ }
+ }
+ }
+ else
+ {
+ for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
+ {
+ (*sit)->traverse(it);
+
+ if (visit && it->inVisit)
+ {
+ if (*sit != sequence.back())
+ visit = it->visitAggregate(InVisit, this);
+ }
+ }
+ }
+
+ it->decrementDepth();
+ }
+
+ if (visit && it->postVisit)
+ it->visitAggregate(PostVisit, this);
+}
+
+//
+// Traverse a selection node. Same comments in binary node apply here.
+//
+void TIntermSelection::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ if (it->preVisit)
+ visit = it->visitSelection(PreVisit, this);
+
+ if (visit) {
+ it->incrementDepth(this);
+ if (it->rightToLeft) {
+ if (falseBlock)
+ falseBlock->traverse(it);
+ if (trueBlock)
+ trueBlock->traverse(it);
+ condition->traverse(it);
+ } else {
+ condition->traverse(it);
+ if (trueBlock)
+ trueBlock->traverse(it);
+ if (falseBlock)
+ falseBlock->traverse(it);
+ }
+ it->decrementDepth();
+ }
+
+ if (visit && it->postVisit)
+ it->visitSelection(PostVisit, this);
+}
+
+//
+// Traverse a loop node. Same comments in binary node apply here.
+//
+void TIntermLoop::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ if (it->preVisit)
+ visit = it->visitLoop(PreVisit, this);
+
+ if (visit)
+ {
+ it->incrementDepth(this);
+
+ if (it->rightToLeft)
+ {
+ if (expr)
+ expr->traverse(it);
+
+ if (body)
+ body->traverse(it);
+
+ if (cond)
+ cond->traverse(it);
+
+ if (init)
+ init->traverse(it);
+ }
+ else
+ {
+ if (init)
+ init->traverse(it);
+
+ if (cond)
+ cond->traverse(it);
+
+ if (body)
+ body->traverse(it);
+
+ if (expr)
+ expr->traverse(it);
+ }
+
+ it->decrementDepth();
+ }
+
+ if (visit && it->postVisit)
+ it->visitLoop(PostVisit, this);
+}
+
+//
+// Traverse a branch node. Same comments in binary node apply here.
+//
+void TIntermBranch::traverse(TIntermTraverser *it)
+{
+ bool visit = true;
+
+ if (it->preVisit)
+ visit = it->visitBranch(PreVisit, this);
+
+ if (visit && expression) {
+ it->incrementDepth(this);
+ expression->traverse(it);
+ it->decrementDepth();
+ }
+
+ if (visit && it->postVisit)
+ it->visitBranch(PostVisit, this);
+}
+
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+//
+// Build the intermediate representation.
+//
+
+#include <float.h>
+#include <limits.h>
+#include <algorithm>
+
+#include "compiler/translator/HashNames.h"
+#include "compiler/translator/localintermediate.h"
+#include "compiler/translator/QualifierAlive.h"
+#include "compiler/translator/RemoveTree.h"
+
+bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
+
+static TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
+{
+ return left > right ? left : right;
+}
+
+const char* getOperatorString(TOperator op)
+{
+ switch (op) {
+ case EOpInitialize: return "=";
+ case EOpAssign: return "=";
+ case EOpAddAssign: return "+=";
+ case EOpSubAssign: return "-=";
+ case EOpDivAssign: return "/=";
+
+ // Fall-through.
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign: return "*=";
+
+ // Fall-through.
+ case EOpIndexDirect:
+ case EOpIndexIndirect: return "[]";
+
+ case EOpIndexDirectStruct: return ".";
+ case EOpVectorSwizzle: return ".";
+ case EOpAdd: return "+";
+ case EOpSub: return "-";
+ case EOpMul: return "*";
+ case EOpDiv: return "/";
+ case EOpMod: UNIMPLEMENTED(); break;
+ case EOpEqual: return "==";
+ case EOpNotEqual: return "!=";
+ case EOpLessThan: return "<";
+ case EOpGreaterThan: return ">";
+ case EOpLessThanEqual: return "<=";
+ case EOpGreaterThanEqual: return ">=";
+
+ // Fall-through.
+ case EOpVectorTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+ case EOpMatrixTimesMatrix: return "*";
+
+ case EOpLogicalOr: return "||";
+ case EOpLogicalXor: return "^^";
+ case EOpLogicalAnd: return "&&";
+ case EOpNegative: return "-";
+ case EOpVectorLogicalNot: return "not";
+ case EOpLogicalNot: return "!";
+ case EOpPostIncrement: return "++";
+ case EOpPostDecrement: return "--";
+ case EOpPreIncrement: return "++";
+ case EOpPreDecrement: return "--";
+
+ // Fall-through.
+ case EOpConvIntToBool:
+ case EOpConvFloatToBool: return "bool";
+
+ // Fall-through.
+ case EOpConvBoolToFloat:
+ case EOpConvIntToFloat: return "float";
+
+ // Fall-through.
+ case EOpConvFloatToInt:
+ case EOpConvBoolToInt: return "int";
+
+ case EOpRadians: return "radians";
+ case EOpDegrees: return "degrees";
+ case EOpSin: return "sin";
+ case EOpCos: return "cos";
+ case EOpTan: return "tan";
+ case EOpAsin: return "asin";
+ case EOpAcos: return "acos";
+ case EOpAtan: return "atan";
+ case EOpExp: return "exp";
+ case EOpLog: return "log";
+ case EOpExp2: return "exp2";
+ case EOpLog2: return "log2";
+ case EOpSqrt: return "sqrt";
+ case EOpInverseSqrt: return "inversesqrt";
+ case EOpAbs: return "abs";
+ case EOpSign: return "sign";
+ case EOpFloor: return "floor";
+ case EOpCeil: return "ceil";
+ case EOpFract: return "fract";
+ case EOpLength: return "length";
+ case EOpNormalize: return "normalize";
+ case EOpDFdx: return "dFdx";
+ case EOpDFdy: return "dFdy";
+ case EOpFwidth: return "fwidth";
+ case EOpAny: return "any";
+ case EOpAll: return "all";
+
+ default: break;
+ }
+ return "";
+}
+
+////////////////////////////////////////////////////////////////////////////
+//
+// First set of functions are to help build the intermediate representation.
+// These functions are not member functions of the nodes.
+// They are called from parser productions.
+//
+/////////////////////////////////////////////////////////////////////////////
+
+//
+// Add a terminal node for an identifier in an expression.
+//
+// Returns the added node.
+//
+TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TSourceLoc& line)
+{
+ TIntermSymbol* node = new TIntermSymbol(id, name, type);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Connect two nodes with a new parent that does a binary operation on the nodes.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line, TSymbolTable& symbolTable)
+{
+ switch (op) {
+ case EOpEqual:
+ case EOpNotEqual:
+ if (left->isArray())
+ return 0;
+ break;
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
+ return 0;
+ }
+ break;
+ case EOpLogicalOr:
+ case EOpLogicalXor:
+ case EOpLogicalAnd:
+ if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
+ return 0;
+ }
+ break;
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpMul:
+ if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
+ return 0;
+ default: break;
+ }
+
+ //
+ // First try converting the children to compatible types.
+ //
+ if (left->getType().getStruct() && right->getType().getStruct()) {
+ if (left->getType() != right->getType())
+ return 0;
+ } else {
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child)
+ right = child;
+ else {
+ child = addConversion(op, right->getType(), left);
+ if (child)
+ left = child;
+ else
+ return 0;
+ }
+ }
+
+ //
+ // Need a new node holding things together then. Make
+ // one and promote it to the right type.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ node->setLine(line);
+
+ node->setLeft(left);
+ node->setRight(right);
+ if (!node->promote(infoSink))
+ return 0;
+
+ //
+ // See if we can fold constants.
+ //
+ TIntermTyped* typedReturnNode = 0;
+ TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
+ TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
+ if (leftTempConstant && rightTempConstant) {
+ typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
+
+ if (typedReturnNode)
+ return typedReturnNode;
+ }
+
+ return node;
+}
+
+//
+// Connect two nodes through an assignment.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
+{
+ //
+ // Like adding binary math, except the conversion can only go
+ // from right to left.
+ //
+ TIntermBinary* node = new TIntermBinary(op);
+ node->setLine(line);
+
+ TIntermTyped* child = addConversion(op, left->getType(), right);
+ if (child == 0)
+ return 0;
+
+ node->setLeft(left);
+ node->setRight(child);
+ if (! node->promote(infoSink))
+ return 0;
+
+ return node;
+}
+
+//
+// Connect two nodes through an index operator, where the left node is the base
+// of an array or struct, and the right node is a direct or indirect offset.
+//
+// Returns the added node.
+// The caller should set the type of the returned node.
+//
+TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, const TSourceLoc& line)
+{
+ TIntermBinary* node = new TIntermBinary(op);
+ node->setLine(line);
+ node->setLeft(base);
+ node->setRight(index);
+
+ // caller should set the type
+
+ return node;
+}
+
+//
+// Add one node as the parent of another that it operates on.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, const TSourceLoc& line, TSymbolTable& symbolTable)
+{
+ TIntermUnary* node;
+ TIntermTyped* child = childNode->getAsTyped();
+
+ if (child == 0) {
+ infoSink.info.message(EPrefixInternalError, line, "Bad type in AddUnaryMath");
+ return 0;
+ }
+
+ switch (op) {
+ case EOpLogicalNot:
+ if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
+ return 0;
+ }
+ break;
+
+ case EOpPostIncrement:
+ case EOpPreIncrement:
+ case EOpPostDecrement:
+ case EOpPreDecrement:
+ case EOpNegative:
+ if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
+ return 0;
+ default: break;
+ }
+
+ //
+ // Do we need to promote the operand?
+ //
+ // Note: Implicit promotions were removed from the language.
+ //
+ TBasicType newType = EbtVoid;
+ switch (op) {
+ case EOpConstructInt: newType = EbtInt; break;
+ case EOpConstructBool: newType = EbtBool; break;
+ case EOpConstructFloat: newType = EbtFloat; break;
+ default: break;
+ }
+
+ if (newType != EbtVoid) {
+ child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
+ child->getNominalSize(),
+ child->isMatrix(),
+ child->isArray()),
+ child);
+ if (child == 0)
+ return 0;
+ }
+
+ //
+ // For constructors, we are now done, it's all in the conversion.
+ //
+ switch (op) {
+ case EOpConstructInt:
+ case EOpConstructBool:
+ case EOpConstructFloat:
+ return child;
+ default: break;
+ }
+
+ TIntermConstantUnion *childTempConstant = 0;
+ if (child->getAsConstantUnion())
+ childTempConstant = child->getAsConstantUnion();
+
+ //
+ // Make a new node for the operator.
+ //
+ node = new TIntermUnary(op);
+ node->setLine(line);
+ node->setOperand(child);
+
+ if (! node->promote(infoSink))
+ return 0;
+
+ if (childTempConstant) {
+ TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
+
+ if (newChild)
+ return newChild;
+ }
+
+ return node;
+}
+
+//
+// This is the safe way to change the operator on an aggregate, as it
+// does lots of error checking and fixing. Especially for establishing
+// a function call's operation on it's set of parameters. Sequences
+// of instructions are also aggregates, but they just direnctly set
+// their operator to EOpSequence.
+//
+// Returns an aggregate node, which could be the one passed in if
+// it was already an aggregate but no operator was set.
+//
+TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TSourceLoc& line)
+{
+ TIntermAggregate* aggNode;
+
+ //
+ // Make sure we have an aggregate. If not turn it into one.
+ //
+ if (node) {
+ aggNode = node->getAsAggregate();
+ if (aggNode == 0 || aggNode->getOp() != EOpNull) {
+ //
+ // Make an aggregate containing this node.
+ //
+ aggNode = new TIntermAggregate();
+ aggNode->getSequence().push_back(node);
+ }
+ } else
+ aggNode = new TIntermAggregate();
+
+ //
+ // Set the operator.
+ //
+ aggNode->setOp(op);
+ aggNode->setLine(line);
+
+ return aggNode;
+}
+
+//
+// Convert one type to another.
+//
+// Returns the node representing the conversion, which could be the same
+// node passed in if no conversion was needed.
+//
+// Return 0 if a conversion can't be done.
+//
+TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
+{
+ //
+ // Does the base type allow operation?
+ //
+ switch (node->getBasicType()) {
+ case EbtVoid:
+ case EbtSampler2D:
+ case EbtSamplerCube:
+ return 0;
+ default: break;
+ }
+
+ //
+ // Otherwise, if types are identical, no problem
+ //
+ if (type == node->getType())
+ return node;
+
+ //
+ // If one's a structure, then no conversions.
+ //
+ if (type.getStruct() || node->getType().getStruct())
+ return 0;
+
+ //
+ // If one's an array, then no conversions.
+ //
+ if (type.isArray() || node->getType().isArray())
+ return 0;
+
+ TBasicType promoteTo;
+
+ switch (op) {
+ //
+ // Explicit conversions
+ //
+ case EOpConstructBool:
+ promoteTo = EbtBool;
+ break;
+ case EOpConstructFloat:
+ promoteTo = EbtFloat;
+ break;
+ case EOpConstructInt:
+ promoteTo = EbtInt;
+ break;
+ default:
+ //
+ // implicit conversions were removed from the language.
+ //
+ if (type.getBasicType() != node->getType().getBasicType())
+ return 0;
+ //
+ // Size and structure could still differ, but that's
+ // handled by operator promotion.
+ //
+ return node;
+ }
+
+ if (node->getAsConstantUnion()) {
+
+ return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
+ } else {
+
+ //
+ // Add a new newNode for the conversion.
+ //
+ TIntermUnary* newNode = 0;
+
+ TOperator newOp = EOpNull;
+ switch (promoteTo) {
+ case EbtFloat:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToFloat; break;
+ case EbtBool: newOp = EOpConvBoolToFloat; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
+ return 0;
+ }
+ break;
+ case EbtBool:
+ switch (node->getBasicType()) {
+ case EbtInt: newOp = EOpConvIntToBool; break;
+ case EbtFloat: newOp = EOpConvFloatToBool; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
+ return 0;
+ }
+ break;
+ case EbtInt:
+ switch (node->getBasicType()) {
+ case EbtBool: newOp = EOpConvBoolToInt; break;
+ case EbtFloat: newOp = EOpConvFloatToInt; break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
+ return 0;
+ }
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion type");
+ return 0;
+ }
+
+ TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
+ newNode = new TIntermUnary(newOp, type);
+ newNode->setLine(node->getLine());
+ newNode->setOperand(node);
+
+ return newNode;
+ }
+}
+
+//
+// Safe way to combine two nodes into an aggregate. Works with null pointers,
+// a node that's not a aggregate yet, etc.
+//
+// Returns the resulting aggregate, unless 0 was passed in for
+// both existing nodes.
+//
+TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& line)
+{
+ if (left == 0 && right == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = 0;
+ if (left)
+ aggNode = left->getAsAggregate();
+ if (!aggNode || aggNode->getOp() != EOpNull) {
+ aggNode = new TIntermAggregate;
+ if (left)
+ aggNode->getSequence().push_back(left);
+ }
+
+ if (right)
+ aggNode->getSequence().push_back(right);
+
+ aggNode->setLine(line);
+
+ return aggNode;
+}
+
+//
+// Turn an existing node into an aggregate.
+//
+// Returns an aggregate, unless 0 was passed in for the existing node.
+//
+TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& line)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggNode = new TIntermAggregate;
+ aggNode->getSequence().push_back(node);
+ aggNode->setLine(line);
+
+ return aggNode;
+}
+
+//
+// For "if" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are in the
+// nodePair.
+//
+// Returns the selection node created.
+//
+TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& line)
+{
+ //
+ // For compile time constant selections, prune the code and
+ // test now.
+ //
+
+ if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
+ if (cond->getAsConstantUnion()->getBConst(0) == true)
+ return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
+ else
+ return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
+ }
+
+ TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
+ node->setLine(line);
+
+ return node;
+}
+
+
+TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
+{
+ if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
+ return right;
+ } else {
+ TIntermTyped *commaAggregate = growAggregate(left, right, line);
+ commaAggregate->getAsAggregate()->setOp(EOpComma);
+ commaAggregate->setType(right->getType());
+ commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
+ return commaAggregate;
+ }
+}
+
+//
+// For "?:" test nodes. There are three children; a condition,
+// a true path, and a false path. The two paths are specified
+// as separate parameters.
+//
+// Returns the selection node created, or 0 if one could not be.
+//
+TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& line)
+{
+ //
+ // Get compatible types.
+ //
+ TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
+ if (child)
+ falseBlock = child;
+ else {
+ child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
+ if (child)
+ trueBlock = child;
+ else
+ return 0;
+ }
+
+ //
+ // See if all the operands are constant, then fold it otherwise not.
+ //
+
+ if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
+ if (cond->getAsConstantUnion()->getBConst(0))
+ return trueBlock;
+ else
+ return falseBlock;
+ }
+
+ //
+ // Make a selection node.
+ //
+ TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
+ node->getTypePointer()->setQualifier(EvqTemporary);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Constant terminal nodes. Has a union that contains bool, float or int constants
+//
+// Returns the constant union node created.
+//
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, const TSourceLoc& line)
+{
+ TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
+ node->setLine(line);
+
+ return node;
+}
+
+TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& line)
+{
+
+ TIntermAggregate* node = new TIntermAggregate(EOpSequence);
+
+ node->setLine(line);
+ TIntermConstantUnion* constIntNode;
+ TIntermSequence &sequenceVector = node->getSequence();
+ ConstantUnion* unionArray;
+
+ for (int i = 0; i < fields.num; i++) {
+ unionArray = new ConstantUnion[1];
+ unionArray->setIConst(fields.offsets[i]);
+ constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
+ sequenceVector.push_back(constIntNode);
+ }
+
+ return node;
+}
+
+//
+// Create loop nodes.
+//
+TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, const TSourceLoc& line)
+{
+ TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// Add branches.
+//
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& line)
+{
+ return addBranch(branchOp, 0, line);
+}
+
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& line)
+{
+ TIntermBranch* node = new TIntermBranch(branchOp, expression);
+ node->setLine(line);
+
+ return node;
+}
+
+//
+// This is to be executed once the final root is put on top by the parsing
+// process.
+//
+bool TIntermediate::postProcess(TIntermNode* root)
+{
+ if (root == 0)
+ return true;
+
+ //
+ // First, finish off the top level sequence, if any
+ //
+ TIntermAggregate* aggRoot = root->getAsAggregate();
+ if (aggRoot && aggRoot->getOp() == EOpNull)
+ aggRoot->setOp(EOpSequence);
+
+ return true;
+}
+
+//
+// This deletes the tree.
+//
+void TIntermediate::remove(TIntermNode* root)
+{
+ if (root)
+ RemoveAllTreeNodes(root);
+}
+
+////////////////////////////////////////////////////////////////
+//
+// Member functions of the nodes used for building the tree.
+//
+////////////////////////////////////////////////////////////////
+
+#define REPLACE_IF_IS(node, type, original, replacement) \
+ if (node == original) { \
+ node = static_cast<type *>(replacement); \
+ return true; \
+ }
+
+bool TIntermLoop::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(init, TIntermNode, original, replacement);
+ REPLACE_IF_IS(cond, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(expr, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(body, TIntermNode, original, replacement);
+ return false;
+}
+
+bool TIntermBranch::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(expression, TIntermTyped, original, replacement);
+ return false;
+}
+
+bool TIntermBinary::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(left, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(right, TIntermTyped, original, replacement);
+ return false;
+}
+
+bool TIntermUnary::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(operand, TIntermTyped, original, replacement);
+ return false;
+}
+
+bool TIntermAggregate::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ for (size_t ii = 0; ii < sequence.size(); ++ii)
+ {
+ REPLACE_IF_IS(sequence[ii], TIntermNode, original, replacement);
+ }
+ return false;
+}
+
+bool TIntermSelection::replaceChildNode(
+ TIntermNode *original, TIntermNode *replacement)
+{
+ REPLACE_IF_IS(condition, TIntermTyped, original, replacement);
+ REPLACE_IF_IS(trueBlock, TIntermNode, original, replacement);
+ REPLACE_IF_IS(falseBlock, TIntermNode, original, replacement);
+ return false;
+}
+
+//
+// Say whether or not an operation node changes the value of a variable.
+//
+bool TIntermOperator::isAssignment() const
+{
+ switch (op) {
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ case EOpAssign:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ case EOpDivAssign:
+ return true;
+ default:
+ return false;
+ }
+}
+
+//
+// returns true if the operator is for one of the constructors
+//
+bool TIntermOperator::isConstructor() const
+{
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ case EOpConstructFloat:
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ case EOpConstructStruct:
+ return true;
+ default:
+ return false;
+ }
+}
+
+//
+// Make sure the type of a unary operator is appropriate for its
+// combination of operation and operand type.
+//
+// Returns false in nothing makes sense.
+//
+bool TIntermUnary::promote(TInfoSink&)
+{
+ switch (op) {
+ case EOpLogicalNot:
+ if (operand->getBasicType() != EbtBool)
+ return false;
+ break;
+ case EOpNegative:
+ case EOpPostIncrement:
+ case EOpPostDecrement:
+ case EOpPreIncrement:
+ case EOpPreDecrement:
+ if (operand->getBasicType() == EbtBool)
+ return false;
+ break;
+
+ // operators for built-ins are already type checked against their prototype
+ case EOpAny:
+ case EOpAll:
+ case EOpVectorLogicalNot:
+ return true;
+
+ default:
+ if (operand->getBasicType() != EbtFloat)
+ return false;
+ }
+
+ setType(operand->getType());
+ type.setQualifier(EvqTemporary);
+
+ return true;
+}
+
+//
+// Establishes the type of the resultant operation, as well as
+// makes the operator the correct one for the operands.
+//
+// Returns false if operator can't work on operands.
+//
+bool TIntermBinary::promote(TInfoSink& infoSink)
+{
+ // This function only handles scalars, vectors, and matrices.
+ if (left->isArray() || right->isArray()) {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operation for arrays");
+ return false;
+ }
+
+ // GLSL ES 2.0 does not support implicit type casting.
+ // So the basic type should always match.
+ if (left->getBasicType() != right->getBasicType())
+ return false;
+
+ //
+ // Base assumption: just make the type the same as the left
+ // operand. Then only deviations from this need be coded.
+ //
+ setType(left->getType());
+
+ // The result gets promoted to the highest precision.
+ TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
+ getTypePointer()->setPrecision(higherPrecision);
+
+ // Binary operations results in temporary variables unless both
+ // operands are const.
+ if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst) {
+ getTypePointer()->setQualifier(EvqTemporary);
+ }
+
+ int size = std::max(left->getNominalSize(), right->getNominalSize());
+
+ //
+ // All scalars. Code after this test assumes this case is removed!
+ //
+ if (size == 1) {
+ switch (op) {
+ //
+ // Promote to conditional
+ //
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ //
+ // And and Or operate on conditionals
+ //
+ case EOpLogicalAnd:
+ case EOpLogicalOr:
+ // Both operands must be of type bool.
+ if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
+ return false;
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ default:
+ break;
+ }
+ return true;
+ }
+
+ // If we reach here, at least one of the operands is vector or matrix.
+ // The other operand could be a scalar, vector, or matrix.
+ // Are the sizes compatible?
+ //
+ if (left->getNominalSize() != right->getNominalSize()) {
+ // If the nominal size of operands do not match:
+ // One of them must be scalar.
+ if (left->getNominalSize() != 1 && right->getNominalSize() != 1)
+ return false;
+ // Operator cannot be of type pure assignment.
+ if (op == EOpAssign || op == EOpInitialize)
+ return false;
+ }
+
+ //
+ // Can these two operands be combined?
+ //
+ TBasicType basicType = left->getBasicType();
+ switch (op) {
+ case EOpMul:
+ if (!left->isMatrix() && right->isMatrix()) {
+ if (left->isVector())
+ op = EOpVectorTimesMatrix;
+ else {
+ op = EOpMatrixTimesScalar;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, true));
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ op = EOpMatrixTimesVector;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ } else {
+ op = EOpMatrixTimesScalar;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ op = EOpMatrixTimesMatrix;
+ } else if (!left->isMatrix() && !right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ op = EOpVectorTimesScalar;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ }
+ } else {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
+ return false;
+ }
+ break;
+ case EOpMulAssign:
+ if (!left->isMatrix() && right->isMatrix()) {
+ if (left->isVector())
+ op = EOpVectorTimesMatrixAssign;
+ else {
+ return false;
+ }
+ } else if (left->isMatrix() && !right->isMatrix()) {
+ if (right->isVector()) {
+ return false;
+ } else {
+ op = EOpMatrixTimesScalarAssign;
+ }
+ } else if (left->isMatrix() && right->isMatrix()) {
+ op = EOpMatrixTimesMatrixAssign;
+ } else if (!left->isMatrix() && !right->isMatrix()) {
+ if (left->isVector() && right->isVector()) {
+ // leave as component product
+ } else if (left->isVector() || right->isVector()) {
+ if (! left->isVector())
+ return false;
+ op = EOpVectorTimesScalarAssign;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, false));
+ }
+ } else {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
+ return false;
+ }
+ break;
+
+ case EOpAssign:
+ case EOpInitialize:
+ case EOpAdd:
+ case EOpSub:
+ case EOpDiv:
+ case EOpAddAssign:
+ case EOpSubAssign:
+ case EOpDivAssign:
+ if ((left->isMatrix() && right->isVector()) ||
+ (left->isVector() && right->isMatrix()))
+ return false;
+ setType(TType(basicType, higherPrecision, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
+ break;
+
+ case EOpEqual:
+ case EOpNotEqual:
+ case EOpLessThan:
+ case EOpGreaterThan:
+ case EOpLessThanEqual:
+ case EOpGreaterThanEqual:
+ if ((left->isMatrix() && right->isVector()) ||
+ (left->isVector() && right->isMatrix()))
+ return false;
+ setType(TType(EbtBool, EbpUndefined));
+ break;
+
+ default:
+ return false;
+ }
+
+ return true;
+}
+
+bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
+{
+ const TFieldList& fields = leftNodeType.getStruct()->fields();
+
+ size_t structSize = fields.size();
+ size_t index = 0;
+
+ for (size_t j = 0; j < structSize; j++) {
+ size_t size = fields[j]->type()->getObjectSize();
+ for (size_t i = 0; i < size; i++) {
+ if (fields[j]->type()->getBasicType() == EbtStruct) {
+ if (!CompareStructure(*(fields[j]->type()), &rightUnionArray[index], &leftUnionArray[index]))
+ return false;
+ } else {
+ if (leftUnionArray[index] != rightUnionArray[index])
+ return false;
+ index++;
+ }
+ }
+ }
+ return true;
+}
+
+bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
+{
+ if (leftNodeType.isArray()) {
+ TType typeWithoutArrayness = leftNodeType;
+ typeWithoutArrayness.clearArrayness();
+
+ size_t arraySize = leftNodeType.getArraySize();
+
+ for (size_t i = 0; i < arraySize; ++i) {
+ size_t offset = typeWithoutArrayness.getObjectSize() * i;
+ if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
+ return false;
+ }
+ } else
+ return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
+
+ return true;
+}
+
+//
+// The fold functions see if an operation on a constant can be done in place,
+// without generating run-time code.
+//
+// Returns the node to keep using, which may or may not be the node passed in.
+//
+
+TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
+{
+ ConstantUnion *unionArray = getUnionArrayPointer();
+ size_t objectSize = getType().getObjectSize();
+
+ if (constantNode) { // binary operations
+ TIntermConstantUnion *node = constantNode->getAsConstantUnion();
+ ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
+ TType returnType = getType();
+
+ // for a case like float f = 1.2 + vec4(2,3,4,5);
+ if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
+ rightUnionArray = new ConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; ++i)
+ rightUnionArray[i] = *node->getUnionArrayPointer();
+ returnType = getType();
+ } else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
+ // for a case like float f = vec4(2,3,4,5) + 1.2;
+ unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
+ for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
+ unionArray[i] = *getUnionArrayPointer();
+ returnType = node->getType();
+ objectSize = constantNode->getType().getObjectSize();
+ }
+
+ ConstantUnion* tempConstArray = 0;
+ TIntermConstantUnion *tempNode;
+
+ bool boolNodeFlag = false;
+ switch(op) {
+ case EOpAdd:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] + rightUnionArray[i];
+ }
+ break;
+ case EOpSub:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] - rightUnionArray[i];
+ }
+ break;
+
+ case EOpMul:
+ case EOpVectorTimesScalar:
+ case EOpMatrixTimesScalar:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] * rightUnionArray[i];
+ }
+ break;
+ case EOpMatrixTimesMatrix:
+ if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix multiply");
+ return 0;
+ }
+ {// support MSVC++6.0
+ int size = getNominalSize();
+ tempConstArray = new ConstantUnion[size*size];
+ for (int row = 0; row < size; row++) {
+ for (int column = 0; column < size; column++) {
+ tempConstArray[size * column + row].setFConst(0.0f);
+ for (int i = 0; i < size; i++) {
+ tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
+ }
+ }
+ }
+ }
+ break;
+ case EOpDiv:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++) {
+ switch (getType().getBasicType()) {
+ case EbtFloat:
+ if (rightUnionArray[i] == 0.0f) {
+ infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
+ tempConstArray[i].setFConst(unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
+ } else
+ tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
+ break;
+
+ case EbtInt:
+ if (rightUnionArray[i] == 0) {
+ infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
+ tempConstArray[i].setIConst(INT_MAX);
+ } else
+ tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, getLine(), "Constant folding cannot be done for \"/\"");
+ return 0;
+ }
+ }
+ }
+ break;
+
+ case EOpMatrixTimesVector:
+ if (node->getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix times vector");
+ return 0;
+ }
+ tempConstArray = new ConstantUnion[getNominalSize()];
+
+ {// support MSVC++6.0
+ for (int size = getNominalSize(), i = 0; i < size; i++) {
+ tempConstArray[i].setFConst(0.0f);
+ for (int j = 0; j < size; j++) {
+ tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
+ }
+ }
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ case EOpVectorTimesMatrix:
+ if (getType().getBasicType() != EbtFloat) {
+ infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for vector times matrix");
+ return 0;
+ }
+
+ tempConstArray = new ConstantUnion[getNominalSize()];
+ {// support MSVC++6.0
+ for (int size = getNominalSize(), i = 0; i < size; i++) {
+ tempConstArray[i].setFConst(0.0f);
+ for (int j = 0; j < size; j++) {
+ tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
+ }
+ }
+ }
+ break;
+
+ case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] && rightUnionArray[i];
+ }
+ break;
+
+ case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ tempConstArray[i] = unionArray[i] || rightUnionArray[i];
+ }
+ break;
+
+ case EOpLogicalXor:
+ tempConstArray = new ConstantUnion[objectSize];
+ {// support MSVC++6.0
+ for (size_t i = 0; i < objectSize; i++)
+ switch (getType().getBasicType()) {
+ case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
+ default: assert(false && "Default missing");
+ }
+ }
+ break;
+
+ case EOpLessThan:
+ assert(objectSize == 1);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(*unionArray < *rightUnionArray);
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ case EOpGreaterThan:
+ assert(objectSize == 1);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(*unionArray > *rightUnionArray);
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ case EOpLessThanEqual:
+ {
+ assert(objectSize == 1);
+ ConstantUnion constant;
+ constant.setBConst(*unionArray > *rightUnionArray);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(!constant.getBConst());
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ }
+ case EOpGreaterThanEqual:
+ {
+ assert(objectSize == 1);
+ ConstantUnion constant;
+ constant.setBConst(*unionArray < *rightUnionArray);
+ tempConstArray = new ConstantUnion[1];
+ tempConstArray->setBConst(!constant.getBConst());
+ returnType = TType(EbtBool, EbpUndefined, EvqConst);
+ break;
+ }
+
+ case EOpEqual:
+ if (getType().getBasicType() == EbtStruct) {
+ if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+ boolNodeFlag = true;
+ } else {
+ for (size_t i = 0; i < objectSize; i++) {
+ if (unionArray[i] != rightUnionArray[i]) {
+ boolNodeFlag = true;
+ break; // break out of for loop
+ }
+ }
+ }
+
+ tempConstArray = new ConstantUnion[1];
+ if (!boolNodeFlag) {
+ tempConstArray->setBConst(true);
+ }
+ else {
+ tempConstArray->setBConst(false);
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ case EOpNotEqual:
+ if (getType().getBasicType() == EbtStruct) {
+ if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+ boolNodeFlag = true;
+ } else {
+ for (size_t i = 0; i < objectSize; i++) {
+ if (unionArray[i] == rightUnionArray[i]) {
+ boolNodeFlag = true;
+ break; // break out of for loop
+ }
+ }
+ }
+
+ tempConstArray = new ConstantUnion[1];
+ if (!boolNodeFlag) {
+ tempConstArray->setBConst(true);
+ }
+ else {
+ tempConstArray->setBConst(false);
+ }
+
+ tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
+ tempNode->setLine(getLine());
+
+ return tempNode;
+
+ default:
+ infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operator for constant folding");
+ return 0;
+ }
+ tempNode = new TIntermConstantUnion(tempConstArray, returnType);
+ tempNode->setLine(getLine());
+
+ return tempNode;
+ } else {
+ //
+ // Do unary operations
+ //
+ TIntermConstantUnion *newNode = 0;
+ ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
+ for (size_t i = 0; i < objectSize; i++) {
+ switch(op) {
+ case EOpNegative:
+ switch (getType().getBasicType()) {
+ case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
+ case EbtInt: tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
+ default:
+ infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
+ return 0;
+ }
+ break;
+ case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
+ switch (getType().getBasicType()) {
+ case EbtBool: tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
+ default:
+ infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
+ return 0;
+ }
+ break;
+ default:
+ return 0;
+ }
+ }
+ newNode = new TIntermConstantUnion(tempConstArray, getType());
+ newNode->setLine(getLine());
+ return newNode;
+ }
+}
+
+TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
+{
+ size_t size = node->getType().getObjectSize();
+
+ ConstantUnion *leftUnionArray = new ConstantUnion[size];
+
+ for (size_t i = 0; i < size; i++) {
+
+ switch (promoteTo) {
+ case EbtFloat:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setFConst(static_cast<float>(node->getIConst(i)));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setFConst(static_cast<float>(node->getBConst(i)));
+ break;
+ case EbtFloat:
+ leftUnionArray[i].setFConst(static_cast<float>(node->getFConst(i)));
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
+ return 0;
+ }
+ break;
+ case EbtInt:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setIConst(static_cast<int>(node->getIConst(i)));
+ break;
+ case EbtBool:
+ leftUnionArray[i].setIConst(static_cast<int>(node->getBConst(i)));
+ break;
+ case EbtFloat:
+ leftUnionArray[i].setIConst(static_cast<int>(node->getFConst(i)));
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
+ return 0;
+ }
+ break;
+ case EbtBool:
+ switch (node->getType().getBasicType()) {
+ case EbtInt:
+ leftUnionArray[i].setBConst(node->getIConst(i) != 0);
+ break;
+ case EbtBool:
+ leftUnionArray[i].setBConst(node->getBConst(i));
+ break;
+ case EbtFloat:
+ leftUnionArray[i].setBConst(node->getFConst(i) != 0.0f);
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
+ return 0;
+ }
+
+ break;
+ default:
+ infoSink.info.message(EPrefixInternalError, node->getLine(), "Incorrect data type found");
+ return 0;
+ }
+
+ }
+
+ const TType& t = node->getType();
+
+ return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
+}
+
+// static
+TString TIntermTraverser::hash(const TString& name, ShHashFunction64 hashFunction)
+{
+ if (hashFunction == NULL || name.empty())
+ return name;
+ khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
+ TStringStream stream;
+ stream << HASHED_NAME_PREFIX << std::hex << number;
+ TString hashedName = stream.str();
+ return hashedName;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef _MMAP_INCLUDED_
+#define _MMAP_INCLUDED_
+
+//
+// Encapsulate memory mapped files
+//
+
+class TMMap {
+public:
+ TMMap(const char* fileName) :
+ fSize(-1), // -1 is the error value returned by GetFileSize()
+ fp(NULL),
+ fBuff(0) // 0 is the error value returned by MapViewOfFile()
+ {
+ if ((fp = fopen(fileName, "r")) == NULL)
+ return;
+ char c = getc(fp);
+ fSize = 0;
+ while (c != EOF) {
+ fSize++;
+ c = getc(fp);
+ }
+ if (c == EOF)
+ fSize++;
+ rewind(fp);
+ fBuff = (char*)malloc(sizeof(char) * fSize);
+ int count = 0;
+ c = getc(fp);
+ while (c != EOF) {
+ fBuff[count++] = c;
+ c = getc(fp);
+ }
+ fBuff[count++] = c;
+ }
+
+ char* getData() { return fBuff; }
+ int getSize() { return fSize; }
+
+ ~TMMap() {
+ if (fp != NULL)
+ fclose(fp);
+ }
+
+private:
+ int fSize; // size of file to map in
+ FILE *fp;
+ char* fBuff; // the actual data;
+};
+
+#endif // _MMAP_INCLUDED_
--- /dev/null
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/MapLongVariableNames.h"
+
+namespace {
+
+TString mapLongName(size_t id, const TString& name, bool isGlobal)
+{
+ ASSERT(name.size() > MAX_SHORTENED_IDENTIFIER_SIZE);
+ TStringStream stream;
+ stream << "webgl_";
+ if (isGlobal)
+ stream << "g";
+ stream << id;
+ if (name[0] != '_')
+ stream << "_";
+ stream << name.substr(0, MAX_SHORTENED_IDENTIFIER_SIZE - stream.str().size());
+ return stream.str();
+}
+
+LongNameMap* gLongNameMapInstance = NULL;
+
+} // anonymous namespace
+
+LongNameMap::LongNameMap()
+ : refCount(0)
+{
+}
+
+LongNameMap::~LongNameMap()
+{
+}
+
+// static
+LongNameMap* LongNameMap::GetInstance()
+{
+ if (gLongNameMapInstance == NULL)
+ gLongNameMapInstance = new LongNameMap;
+ gLongNameMapInstance->refCount++;
+ return gLongNameMapInstance;
+}
+
+void LongNameMap::Release()
+{
+ ASSERT(gLongNameMapInstance == this);
+ ASSERT(refCount > 0);
+ refCount--;
+ if (refCount == 0) {
+ delete gLongNameMapInstance;
+ gLongNameMapInstance = NULL;
+ }
+}
+
+const char* LongNameMap::Find(const char* originalName) const
+{
+ std::map<std::string, std::string>::const_iterator it = mLongNameMap.find(
+ originalName);
+ if (it != mLongNameMap.end())
+ return (*it).second.c_str();
+ return NULL;
+}
+
+void LongNameMap::Insert(const char* originalName, const char* mappedName)
+{
+ mLongNameMap.insert(std::map<std::string, std::string>::value_type(
+ originalName, mappedName));
+}
+
+size_t LongNameMap::Size() const
+{
+ return mLongNameMap.size();
+}
+
+MapLongVariableNames::MapLongVariableNames(LongNameMap* globalMap)
+{
+ ASSERT(globalMap);
+ mGlobalMap = globalMap;
+}
+
+void MapLongVariableNames::visitSymbol(TIntermSymbol* symbol)
+{
+ ASSERT(symbol != NULL);
+ if (symbol->getSymbol().size() > MAX_SHORTENED_IDENTIFIER_SIZE) {
+ switch (symbol->getQualifier()) {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ case EvqInvariantVaryingIn:
+ case EvqInvariantVaryingOut:
+ case EvqUniform:
+ symbol->setSymbol(
+ mapGlobalLongName(symbol->getSymbol()));
+ break;
+ default:
+ symbol->setSymbol(
+ mapLongName(symbol->getId(), symbol->getSymbol(), false));
+ break;
+ };
+ }
+}
+
+TString MapLongVariableNames::mapGlobalLongName(const TString& name)
+{
+ ASSERT(mGlobalMap);
+ const char* mappedName = mGlobalMap->Find(name.c_str());
+ if (mappedName != NULL)
+ return mappedName;
+ size_t id = mGlobalMap->Size();
+ TString rt = mapLongName(id, name, true);
+ mGlobalMap->Insert(name.c_str(), rt.c_str());
+ return rt;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef COMPILER_MAP_LONG_VARIABLE_NAMES_H_
+#define COMPILER_MAP_LONG_VARIABLE_NAMES_H_
+
+#include "GLSLANG/ShaderLang.h"
+
+#include "compiler/translator/intermediate.h"
+#include "compiler/translator/VariableInfo.h"
+
+// This size does not include '\0' in the end.
+#define MAX_SHORTENED_IDENTIFIER_SIZE 32
+
+// This is a ref-counted singleton. GetInstance() returns a pointer to the
+// singleton, and after use, call Release(). GetInstance() and Release() should
+// be paired.
+class LongNameMap {
+public:
+ static LongNameMap* GetInstance();
+ void Release();
+
+ // Return the mapped name if <originalName, mappedName> is in the map;
+ // otherwise, return NULL.
+ const char* Find(const char* originalName) const;
+
+ // Insert a pair into the map.
+ void Insert(const char* originalName, const char* mappedName);
+
+ // Return the number of entries in the map.
+ size_t Size() const;
+
+private:
+ LongNameMap();
+ ~LongNameMap();
+
+ size_t refCount;
+ std::map<std::string, std::string> mLongNameMap;
+};
+
+// Traverses intermediate tree to map attributes and uniforms names that are
+// longer than MAX_SHORTENED_IDENTIFIER_SIZE to MAX_SHORTENED_IDENTIFIER_SIZE.
+class MapLongVariableNames : public TIntermTraverser {
+public:
+ MapLongVariableNames(LongNameMap* globalMap);
+
+ virtual void visitSymbol(TIntermSymbol*);
+
+private:
+ TString mapGlobalLongName(const TString& name);
+
+ LongNameMap* mGlobalMap;
+};
+
+#endif // COMPILER_MAP_LONG_VARIABLE_NAMES_H_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+// NodeSearch.h: Utilities for searching translator node graphs
+//
+
+#ifndef TRANSLATOR_NODESEARCH_H_
+#define TRANSLATOR_NODESEARCH_H_
+
+#include "compiler/translator/intermediate.h"
+
+namespace sh
+{
+
+template <class Parent>
+class NodeSearchTraverser : public TIntermTraverser
+{
+ public:
+ NodeSearchTraverser()
+ : mFound(false)
+ {}
+
+ bool found() const { return mFound; }
+
+ static bool search(TIntermNode *node)
+ {
+ Parent searchTraverser;
+ node->traverse(&searchTraverser);
+ return searchTraverser.found();
+ }
+
+ protected:
+ bool mFound;
+};
+
+class FindDiscard : public NodeSearchTraverser<FindDiscard>
+{
+ public:
+ virtual bool visitBranch(Visit visit, TIntermBranch *node)
+ {
+ switch (node->getFlowOp())
+ {
+ case EOpKill:
+ mFound = true;
+ break;
+
+ default: break;
+ }
+
+ return !mFound;
+ }
+};
+
+class FindSideEffectRewriting : public NodeSearchTraverser<FindSideEffectRewriting>
+{
+ public:
+ virtual bool visitBinary(Visit visit, TIntermBinary *node)
+ {
+ switch (node->getOp())
+ {
+ case EOpLogicalOr:
+ case EOpLogicalAnd:
+ if (node->getRight()->hasSideEffects())
+ {
+ mFound = true;
+ }
+ break;
+
+ default: break;
+ }
+
+ return !mFound;
+ }
+};
+
+}
+
+#endif // TRANSLATOR_NODESEARCH_H_
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/OutputESSL.h"
+
+TOutputESSL::TOutputESSL(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable)
+ : TOutputGLSLBase(objSink, clampingStrategy, hashFunction, nameMap, symbolTable)
+{
+}
+
+bool TOutputESSL::writeVariablePrecision(TPrecision precision)
+{
+ if (precision == EbpUndefined)
+ return false;
+
+ TInfoSinkBase& out = objSink();
+ out << getPrecisionString(precision);
+ return true;
+}
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef CROSSCOMPILERGLSL_OUTPUTESSL_H_
+#define CROSSCOMPILERGLSL_OUTPUTESSL_H_
+
+#include "compiler/translator/OutputGLSLBase.h"
+
+class TOutputESSL : public TOutputGLSLBase
+{
+public:
+ TOutputESSL(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable);
+
+protected:
+ virtual bool writeVariablePrecision(TPrecision precision);
+};
+
+#endif // CROSSCOMPILERGLSL_OUTPUTESSL_H_
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/OutputGLSL.h"
+
+TOutputGLSL::TOutputGLSL(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable)
+ : TOutputGLSLBase(objSink, clampingStrategy, hashFunction, nameMap, symbolTable)
+{
+}
+
+bool TOutputGLSL::writeVariablePrecision(TPrecision)
+{
+ return false;
+}
+
+void TOutputGLSL::visitSymbol(TIntermSymbol* node)
+{
+ TInfoSinkBase& out = objSink();
+
+ if (node->getSymbol() == "gl_FragDepthEXT")
+ {
+ out << "gl_FragDepth";
+ }
+ else
+ {
+ TOutputGLSLBase::visitSymbol(node);
+ }
+}
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef CROSSCOMPILERGLSL_OUTPUTGLSL_H_
+#define CROSSCOMPILERGLSL_OUTPUTGLSL_H_
+
+#include "compiler/translator/OutputGLSLBase.h"
+
+class TOutputGLSL : public TOutputGLSLBase
+{
+public:
+ TOutputGLSL(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable);
+
+protected:
+ virtual bool writeVariablePrecision(TPrecision);
+ virtual void visitSymbol(TIntermSymbol* node);
+};
+
+#endif // CROSSCOMPILERGLSL_OUTPUTGLSL_H_
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/OutputGLSLBase.h"
+#include "compiler/translator/compilerdebug.h"
+
+#include <cfloat>
+
+namespace
+{
+TString arrayBrackets(const TType& type)
+{
+ ASSERT(type.isArray());
+ TInfoSinkBase out;
+ out << "[" << type.getArraySize() << "]";
+ return TString(out.c_str());
+}
+
+bool isSingleStatement(TIntermNode* node) {
+ if (const TIntermAggregate* aggregate = node->getAsAggregate())
+ {
+ return (aggregate->getOp() != EOpFunction) &&
+ (aggregate->getOp() != EOpSequence);
+ }
+ else if (const TIntermSelection* selection = node->getAsSelectionNode())
+ {
+ // Ternary operators are usually part of an assignment operator.
+ // This handles those rare cases in which they are all by themselves.
+ return selection->usesTernaryOperator();
+ }
+ else if (node->getAsLoopNode())
+ {
+ return false;
+ }
+ return true;
+}
+} // namespace
+
+TOutputGLSLBase::TOutputGLSLBase(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable)
+ : TIntermTraverser(true, true, true),
+ mObjSink(objSink),
+ mDeclaringVariables(false),
+ mClampingStrategy(clampingStrategy),
+ mHashFunction(hashFunction),
+ mNameMap(nameMap),
+ mSymbolTable(symbolTable)
+{
+}
+
+void TOutputGLSLBase::writeTriplet(Visit visit, const char* preStr, const char* inStr, const char* postStr)
+{
+ TInfoSinkBase& out = objSink();
+ if (visit == PreVisit && preStr)
+ {
+ out << preStr;
+ }
+ else if (visit == InVisit && inStr)
+ {
+ out << inStr;
+ }
+ else if (visit == PostVisit && postStr)
+ {
+ out << postStr;
+ }
+}
+
+void TOutputGLSLBase::writeVariableType(const TType& type)
+{
+ TInfoSinkBase& out = objSink();
+ TQualifier qualifier = type.getQualifier();
+ // TODO(alokp): Validate qualifier for variable declarations.
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal))
+ out << type.getQualifierString() << " ";
+ // Declare the struct if we have not done so already.
+ if ((type.getBasicType() == EbtStruct) && !structDeclared(type.getStruct()))
+ {
+ declareStruct(type.getStruct());
+ }
+ else
+ {
+ if (writeVariablePrecision(type.getPrecision()))
+ out << " ";
+ out << getTypeName(type);
+ }
+}
+
+void TOutputGLSLBase::writeFunctionParameters(const TIntermSequence& args)
+{
+ TInfoSinkBase& out = objSink();
+ for (TIntermSequence::const_iterator iter = args.begin();
+ iter != args.end(); ++iter)
+ {
+ const TIntermSymbol* arg = (*iter)->getAsSymbolNode();
+ ASSERT(arg != NULL);
+
+ const TType& type = arg->getType();
+ writeVariableType(type);
+
+ const TString& name = arg->getSymbol();
+ if (!name.empty())
+ out << " " << hashName(name);
+ if (type.isArray())
+ out << arrayBrackets(type);
+
+ // Put a comma if this is not the last argument.
+ if (iter != args.end() - 1)
+ out << ", ";
+ }
+}
+
+const ConstantUnion* TOutputGLSLBase::writeConstantUnion(const TType& type,
+ const ConstantUnion* pConstUnion)
+{
+ TInfoSinkBase& out = objSink();
+
+ if (type.getBasicType() == EbtStruct)
+ {
+ const TStructure* structure = type.getStruct();
+ out << hashName(structure->name()) << "(";
+
+ const TFieldList& fields = structure->fields();
+ for (size_t i = 0; i < fields.size(); ++i)
+ {
+ const TType* fieldType = fields[i]->type();
+ ASSERT(fieldType != NULL);
+ pConstUnion = writeConstantUnion(*fieldType, pConstUnion);
+ if (i != fields.size() - 1) out << ", ";
+ }
+ out << ")";
+ }
+ else
+ {
+ size_t size = type.getObjectSize();
+ bool writeType = size > 1;
+ if (writeType) out << getTypeName(type) << "(";
+ for (size_t i = 0; i < size; ++i, ++pConstUnion)
+ {
+ switch (pConstUnion->getType())
+ {
+ case EbtFloat: out << std::min(FLT_MAX, std::max(-FLT_MAX, pConstUnion->getFConst())); break;
+ case EbtInt: out << pConstUnion->getIConst(); break;
+ case EbtBool: out << pConstUnion->getBConst(); break;
+ default: UNREACHABLE();
+ }
+ if (i != size - 1) out << ", ";
+ }
+ if (writeType) out << ")";
+ }
+ return pConstUnion;
+}
+
+void TOutputGLSLBase::visitSymbol(TIntermSymbol* node)
+{
+ TInfoSinkBase& out = objSink();
+ if (mLoopUnroll.NeedsToReplaceSymbolWithValue(node))
+ out << mLoopUnroll.GetLoopIndexValue(node);
+ else
+ out << hashVariableName(node->getSymbol());
+
+ if (mDeclaringVariables && node->getType().isArray())
+ out << arrayBrackets(node->getType());
+}
+
+void TOutputGLSLBase::visitConstantUnion(TIntermConstantUnion* node)
+{
+ writeConstantUnion(node->getType(), node->getUnionArrayPointer());
+}
+
+bool TOutputGLSLBase::visitBinary(Visit visit, TIntermBinary* node)
+{
+ bool visitChildren = true;
+ TInfoSinkBase& out = objSink();
+ switch (node->getOp())
+ {
+ case EOpInitialize:
+ if (visit == InVisit)
+ {
+ out << " = ";
+ // RHS of initialize is not being declared.
+ mDeclaringVariables = false;
+ }
+ break;
+ case EOpAssign: writeTriplet(visit, "(", " = ", ")"); break;
+ case EOpAddAssign: writeTriplet(visit, "(", " += ", ")"); break;
+ case EOpSubAssign: writeTriplet(visit, "(", " -= ", ")"); break;
+ case EOpDivAssign: writeTriplet(visit, "(", " /= ", ")"); break;
+ // Notice the fall-through.
+ case EOpMulAssign:
+ case EOpVectorTimesMatrixAssign:
+ case EOpVectorTimesScalarAssign:
+ case EOpMatrixTimesScalarAssign:
+ case EOpMatrixTimesMatrixAssign:
+ writeTriplet(visit, "(", " *= ", ")");
+ break;
+
+ case EOpIndexDirect:
+ writeTriplet(visit, NULL, "[", "]");
+ break;
+ case EOpIndexIndirect:
+ if (node->getAddIndexClamp())
+ {
+ if (visit == InVisit)
+ {
+ if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
+ out << "[int(clamp(float(";
+ } else {
+ out << "[webgl_int_clamp(";
+ }
+ }
+ else if (visit == PostVisit)
+ {
+ int maxSize;
+ TIntermTyped *left = node->getLeft();
+ TType leftType = left->getType();
+
+ if (left->isArray())
+ {
+ // The shader will fail validation if the array length is not > 0.
+ maxSize = leftType.getArraySize() - 1;
+ }
+ else
+ {
+ maxSize = leftType.getNominalSize() - 1;
+ }
+
+ if (mClampingStrategy == SH_CLAMP_WITH_CLAMP_INTRINSIC) {
+ out << "), 0.0, float(" << maxSize << ")))]";
+ } else {
+ out << ", 0, " << maxSize << ")]";
+ }
+ }
+ }
+ else
+ {
+ writeTriplet(visit, NULL, "[", "]");
+ }
+ break;
+ case EOpIndexDirectStruct:
+ if (visit == InVisit)
+ {
+ // Here we are writing out "foo.bar", where "foo" is struct
+ // and "bar" is field. In AST, it is represented as a binary
+ // node, where left child represents "foo" and right child "bar".
+ // The node itself represents ".". The struct field "bar" is
+ // actually stored as an index into TStructure::fields.
+ out << ".";
+ const TStructure* structure = node->getLeft()->getType().getStruct();
+ const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
+ const TField* field = structure->fields()[index->getIConst(0)];
+
+ TString fieldName = field->name();
+ if (!mSymbolTable.findBuiltIn(structure->name()))
+ fieldName = hashName(fieldName);
+
+ out << fieldName;
+ visitChildren = false;
+ }
+ break;
+ case EOpVectorSwizzle:
+ if (visit == InVisit)
+ {
+ out << ".";
+ TIntermAggregate* rightChild = node->getRight()->getAsAggregate();
+ TIntermSequence& sequence = rightChild->getSequence();
+ for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); ++sit)
+ {
+ TIntermConstantUnion* element = (*sit)->getAsConstantUnion();
+ ASSERT(element->getBasicType() == EbtInt);
+ ASSERT(element->getNominalSize() == 1);
+ const ConstantUnion& data = element->getUnionArrayPointer()[0];
+ ASSERT(data.getType() == EbtInt);
+ switch (data.getIConst())
+ {
+ case 0: out << "x"; break;
+ case 1: out << "y"; break;
+ case 2: out << "z"; break;
+ case 3: out << "w"; break;
+ default: UNREACHABLE(); break;
+ }
+ }
+ visitChildren = false;
+ }
+ break;
+
+ case EOpAdd: writeTriplet(visit, "(", " + ", ")"); break;
+ case EOpSub: writeTriplet(visit, "(", " - ", ")"); break;
+ case EOpMul: writeTriplet(visit, "(", " * ", ")"); break;
+ case EOpDiv: writeTriplet(visit, "(", " / ", ")"); break;
+ case EOpMod: UNIMPLEMENTED(); break;
+ case EOpEqual: writeTriplet(visit, "(", " == ", ")"); break;
+ case EOpNotEqual: writeTriplet(visit, "(", " != ", ")"); break;
+ case EOpLessThan: writeTriplet(visit, "(", " < ", ")"); break;
+ case EOpGreaterThan: writeTriplet(visit, "(", " > ", ")"); break;
+ case EOpLessThanEqual: writeTriplet(visit, "(", " <= ", ")"); break;
+ case EOpGreaterThanEqual: writeTriplet(visit, "(", " >= ", ")"); break;
+
+ // Notice the fall-through.
+ case EOpVectorTimesScalar:
+ case EOpVectorTimesMatrix:
+ case EOpMatrixTimesVector:
+ case EOpMatrixTimesScalar:
+ case EOpMatrixTimesMatrix:
+ writeTriplet(visit, "(", " * ", ")");
+ break;
+
+ case EOpLogicalOr: writeTriplet(visit, "(", " || ", ")"); break;
+ case EOpLogicalXor: writeTriplet(visit, "(", " ^^ ", ")"); break;
+ case EOpLogicalAnd: writeTriplet(visit, "(", " && ", ")"); break;
+ default: UNREACHABLE(); break;
+ }
+
+ return visitChildren;
+}
+
+bool TOutputGLSLBase::visitUnary(Visit visit, TIntermUnary* node)
+{
+ TString preString;
+ TString postString = ")";
+
+ switch (node->getOp())
+ {
+ case EOpNegative: preString = "(-"; break;
+ case EOpVectorLogicalNot: preString = "not("; break;
+ case EOpLogicalNot: preString = "(!"; break;
+
+ case EOpPostIncrement: preString = "("; postString = "++)"; break;
+ case EOpPostDecrement: preString = "("; postString = "--)"; break;
+ case EOpPreIncrement: preString = "(++"; break;
+ case EOpPreDecrement: preString = "(--"; break;
+
+ case EOpConvIntToBool:
+ case EOpConvFloatToBool:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: preString = "bool("; break;
+ case 2: preString = "bvec2("; break;
+ case 3: preString = "bvec3("; break;
+ case 4: preString = "bvec4("; break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpConvBoolToFloat:
+ case EOpConvIntToFloat:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: preString = "float("; break;
+ case 2: preString = "vec2("; break;
+ case 3: preString = "vec3("; break;
+ case 4: preString = "vec4("; break;
+ default: UNREACHABLE();
+ }
+ break;
+ case EOpConvFloatToInt:
+ case EOpConvBoolToInt:
+ switch (node->getOperand()->getType().getNominalSize())
+ {
+ case 1: preString = "int("; break;
+ case 2: preString = "ivec2("; break;
+ case 3: preString = "ivec3("; break;
+ case 4: preString = "ivec4("; break;
+ default: UNREACHABLE();
+ }
+ break;
+
+ case EOpRadians: preString = "radians("; break;
+ case EOpDegrees: preString = "degrees("; break;
+ case EOpSin: preString = "sin("; break;
+ case EOpCos: preString = "cos("; break;
+ case EOpTan: preString = "tan("; break;
+ case EOpAsin: preString = "asin("; break;
+ case EOpAcos: preString = "acos("; break;
+ case EOpAtan: preString = "atan("; break;
+
+ case EOpExp: preString = "exp("; break;
+ case EOpLog: preString = "log("; break;
+ case EOpExp2: preString = "exp2("; break;
+ case EOpLog2: preString = "log2("; break;
+ case EOpSqrt: preString = "sqrt("; break;
+ case EOpInverseSqrt: preString = "inversesqrt("; break;
+
+ case EOpAbs: preString = "abs("; break;
+ case EOpSign: preString = "sign("; break;
+ case EOpFloor: preString = "floor("; break;
+ case EOpCeil: preString = "ceil("; break;
+ case EOpFract: preString = "fract("; break;
+
+ case EOpLength: preString = "length("; break;
+ case EOpNormalize: preString = "normalize("; break;
+
+ case EOpDFdx: preString = "dFdx("; break;
+ case EOpDFdy: preString = "dFdy("; break;
+ case EOpFwidth: preString = "fwidth("; break;
+
+ case EOpAny: preString = "any("; break;
+ case EOpAll: preString = "all("; break;
+
+ default: UNREACHABLE(); break;
+ }
+
+ if (visit == PreVisit && node->getUseEmulatedFunction())
+ preString = BuiltInFunctionEmulator::GetEmulatedFunctionName(preString);
+ writeTriplet(visit, preString.c_str(), NULL, postString.c_str());
+
+ return true;
+}
+
+bool TOutputGLSLBase::visitSelection(Visit visit, TIntermSelection* node)
+{
+ TInfoSinkBase& out = objSink();
+
+ if (node->usesTernaryOperator())
+ {
+ // Notice two brackets at the beginning and end. The outer ones
+ // encapsulate the whole ternary expression. This preserves the
+ // order of precedence when ternary expressions are used in a
+ // compound expression, i.e., c = 2 * (a < b ? 1 : 2).
+ out << "((";
+ node->getCondition()->traverse(this);
+ out << ") ? (";
+ node->getTrueBlock()->traverse(this);
+ out << ") : (";
+ node->getFalseBlock()->traverse(this);
+ out << "))";
+ }
+ else
+ {
+ out << "if (";
+ node->getCondition()->traverse(this);
+ out << ")\n";
+
+ incrementDepth(node);
+ visitCodeBlock(node->getTrueBlock());
+
+ if (node->getFalseBlock())
+ {
+ out << "else\n";
+ visitCodeBlock(node->getFalseBlock());
+ }
+ decrementDepth();
+ }
+ return false;
+}
+
+bool TOutputGLSLBase::visitAggregate(Visit visit, TIntermAggregate* node)
+{
+ bool visitChildren = true;
+ TInfoSinkBase& out = objSink();
+ TString preString;
+ bool delayedWrite = false;
+ switch (node->getOp())
+ {
+ case EOpSequence: {
+ // Scope the sequences except when at the global scope.
+ if (depth > 0) out << "{\n";
+
+ incrementDepth(node);
+ const TIntermSequence& sequence = node->getSequence();
+ for (TIntermSequence::const_iterator iter = sequence.begin();
+ iter != sequence.end(); ++iter)
+ {
+ TIntermNode* node = *iter;
+ ASSERT(node != NULL);
+ node->traverse(this);
+
+ if (isSingleStatement(node))
+ out << ";\n";
+ }
+ decrementDepth();
+
+ // Scope the sequences except when at the global scope.
+ if (depth > 0) out << "}\n";
+ visitChildren = false;
+ break;
+ }
+ case EOpPrototype: {
+ // Function declaration.
+ ASSERT(visit == PreVisit);
+ writeVariableType(node->getType());
+ out << " " << hashName(node->getName());
+
+ out << "(";
+ writeFunctionParameters(node->getSequence());
+ out << ")";
+
+ visitChildren = false;
+ break;
+ }
+ case EOpFunction: {
+ // Function definition.
+ ASSERT(visit == PreVisit);
+ writeVariableType(node->getType());
+ out << " " << hashFunctionName(node->getName());
+
+ incrementDepth(node);
+ // Function definition node contains one or two children nodes
+ // representing function parameters and function body. The latter
+ // is not present in case of empty function bodies.
+ const TIntermSequence& sequence = node->getSequence();
+ ASSERT((sequence.size() == 1) || (sequence.size() == 2));
+ TIntermSequence::const_iterator seqIter = sequence.begin();
+
+ // Traverse function parameters.
+ TIntermAggregate* params = (*seqIter)->getAsAggregate();
+ ASSERT(params != NULL);
+ ASSERT(params->getOp() == EOpParameters);
+ params->traverse(this);
+
+ // Traverse function body.
+ TIntermAggregate* body = ++seqIter != sequence.end() ?
+ (*seqIter)->getAsAggregate() : NULL;
+ visitCodeBlock(body);
+ decrementDepth();
+
+ // Fully processed; no need to visit children.
+ visitChildren = false;
+ break;
+ }
+ case EOpFunctionCall:
+ // Function call.
+ if (visit == PreVisit)
+ {
+ out << hashFunctionName(node->getName()) << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << ", ";
+ }
+ else
+ {
+ out << ")";
+ }
+ break;
+ case EOpParameters: {
+ // Function parameters.
+ ASSERT(visit == PreVisit);
+ out << "(";
+ writeFunctionParameters(node->getSequence());
+ out << ")";
+ visitChildren = false;
+ break;
+ }
+ case EOpDeclaration: {
+ // Variable declaration.
+ if (visit == PreVisit)
+ {
+ const TIntermSequence& sequence = node->getSequence();
+ const TIntermTyped* variable = sequence.front()->getAsTyped();
+ writeVariableType(variable->getType());
+ out << " ";
+ mDeclaringVariables = true;
+ }
+ else if (visit == InVisit)
+ {
+ out << ", ";
+ mDeclaringVariables = true;
+ }
+ else
+ {
+ mDeclaringVariables = false;
+ }
+ break;
+ }
+ case EOpConstructFloat: writeTriplet(visit, "float(", NULL, ")"); break;
+ case EOpConstructVec2: writeTriplet(visit, "vec2(", ", ", ")"); break;
+ case EOpConstructVec3: writeTriplet(visit, "vec3(", ", ", ")"); break;
+ case EOpConstructVec4: writeTriplet(visit, "vec4(", ", ", ")"); break;
+ case EOpConstructBool: writeTriplet(visit, "bool(", NULL, ")"); break;
+ case EOpConstructBVec2: writeTriplet(visit, "bvec2(", ", ", ")"); break;
+ case EOpConstructBVec3: writeTriplet(visit, "bvec3(", ", ", ")"); break;
+ case EOpConstructBVec4: writeTriplet(visit, "bvec4(", ", ", ")"); break;
+ case EOpConstructInt: writeTriplet(visit, "int(", NULL, ")"); break;
+ case EOpConstructIVec2: writeTriplet(visit, "ivec2(", ", ", ")"); break;
+ case EOpConstructIVec3: writeTriplet(visit, "ivec3(", ", ", ")"); break;
+ case EOpConstructIVec4: writeTriplet(visit, "ivec4(", ", ", ")"); break;
+ case EOpConstructMat2: writeTriplet(visit, "mat2(", ", ", ")"); break;
+ case EOpConstructMat3: writeTriplet(visit, "mat3(", ", ", ")"); break;
+ case EOpConstructMat4: writeTriplet(visit, "mat4(", ", ", ")"); break;
+ case EOpConstructStruct:
+ if (visit == PreVisit)
+ {
+ const TType& type = node->getType();
+ ASSERT(type.getBasicType() == EbtStruct);
+ out << hashName(type.getStruct()->name()) << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << ", ";
+ }
+ else
+ {
+ out << ")";
+ }
+ break;
+
+ case EOpLessThan: preString = "lessThan("; delayedWrite = true; break;
+ case EOpGreaterThan: preString = "greaterThan("; delayedWrite = true; break;
+ case EOpLessThanEqual: preString = "lessThanEqual("; delayedWrite = true; break;
+ case EOpGreaterThanEqual: preString = "greaterThanEqual("; delayedWrite = true; break;
+ case EOpVectorEqual: preString = "equal("; delayedWrite = true; break;
+ case EOpVectorNotEqual: preString = "notEqual("; delayedWrite = true; break;
+ case EOpComma: writeTriplet(visit, NULL, ", ", NULL); break;
+
+ case EOpMod: preString = "mod("; delayedWrite = true; break;
+ case EOpPow: preString = "pow("; delayedWrite = true; break;
+ case EOpAtan: preString = "atan("; delayedWrite = true; break;
+ case EOpMin: preString = "min("; delayedWrite = true; break;
+ case EOpMax: preString = "max("; delayedWrite = true; break;
+ case EOpClamp: preString = "clamp("; delayedWrite = true; break;
+ case EOpMix: preString = "mix("; delayedWrite = true; break;
+ case EOpStep: preString = "step("; delayedWrite = true; break;
+ case EOpSmoothStep: preString = "smoothstep("; delayedWrite = true; break;
+
+ case EOpDistance: preString = "distance("; delayedWrite = true; break;
+ case EOpDot: preString = "dot("; delayedWrite = true; break;
+ case EOpCross: preString = "cross("; delayedWrite = true; break;
+ case EOpFaceForward: preString = "faceforward("; delayedWrite = true; break;
+ case EOpReflect: preString = "reflect("; delayedWrite = true; break;
+ case EOpRefract: preString = "refract("; delayedWrite = true; break;
+ case EOpMul: preString = "matrixCompMult("; delayedWrite = true; break;
+
+ default: UNREACHABLE(); break;
+ }
+ if (delayedWrite && visit == PreVisit && node->getUseEmulatedFunction())
+ preString = BuiltInFunctionEmulator::GetEmulatedFunctionName(preString);
+ if (delayedWrite)
+ writeTriplet(visit, preString.c_str(), ", ", ")");
+ return visitChildren;
+}
+
+bool TOutputGLSLBase::visitLoop(Visit visit, TIntermLoop* node)
+{
+ TInfoSinkBase& out = objSink();
+
+ incrementDepth(node);
+ // Loop header.
+ TLoopType loopType = node->getType();
+ if (loopType == ELoopFor) // for loop
+ {
+ if (!node->getUnrollFlag()) {
+ out << "for (";
+ if (node->getInit())
+ node->getInit()->traverse(this);
+ out << "; ";
+
+ if (node->getCondition())
+ node->getCondition()->traverse(this);
+ out << "; ";
+
+ if (node->getExpression())
+ node->getExpression()->traverse(this);
+ out << ")\n";
+ }
+ }
+ else if (loopType == ELoopWhile) // while loop
+ {
+ out << "while (";
+ ASSERT(node->getCondition() != NULL);
+ node->getCondition()->traverse(this);
+ out << ")\n";
+ }
+ else // do-while loop
+ {
+ ASSERT(loopType == ELoopDoWhile);
+ out << "do\n";
+ }
+
+ // Loop body.
+ if (node->getUnrollFlag())
+ {
+ TLoopIndexInfo indexInfo;
+ mLoopUnroll.FillLoopIndexInfo(node, indexInfo);
+ mLoopUnroll.Push(indexInfo);
+ while (mLoopUnroll.SatisfiesLoopCondition())
+ {
+ visitCodeBlock(node->getBody());
+ mLoopUnroll.Step();
+ }
+ mLoopUnroll.Pop();
+ }
+ else
+ {
+ visitCodeBlock(node->getBody());
+ }
+
+ // Loop footer.
+ if (loopType == ELoopDoWhile) // do-while loop
+ {
+ out << "while (";
+ ASSERT(node->getCondition() != NULL);
+ node->getCondition()->traverse(this);
+ out << ");\n";
+ }
+ decrementDepth();
+
+ // No need to visit children. They have been already processed in
+ // this function.
+ return false;
+}
+
+bool TOutputGLSLBase::visitBranch(Visit visit, TIntermBranch* node)
+{
+ switch (node->getFlowOp())
+ {
+ case EOpKill: writeTriplet(visit, "discard", NULL, NULL); break;
+ case EOpBreak: writeTriplet(visit, "break", NULL, NULL); break;
+ case EOpContinue: writeTriplet(visit, "continue", NULL, NULL); break;
+ case EOpReturn: writeTriplet(visit, "return ", NULL, NULL); break;
+ default: UNREACHABLE(); break;
+ }
+
+ return true;
+}
+
+void TOutputGLSLBase::visitCodeBlock(TIntermNode* node) {
+ TInfoSinkBase &out = objSink();
+ if (node != NULL)
+ {
+ node->traverse(this);
+ // Single statements not part of a sequence need to be terminated
+ // with semi-colon.
+ if (isSingleStatement(node))
+ out << ";\n";
+ }
+ else
+ {
+ out << "{\n}\n"; // Empty code block.
+ }
+}
+
+TString TOutputGLSLBase::getTypeName(const TType& type)
+{
+ TInfoSinkBase out;
+ if (type.isMatrix())
+ {
+ out << "mat";
+ out << type.getNominalSize();
+ }
+ else if (type.isVector())
+ {
+ switch (type.getBasicType())
+ {
+ case EbtFloat: out << "vec"; break;
+ case EbtInt: out << "ivec"; break;
+ case EbtBool: out << "bvec"; break;
+ default: UNREACHABLE(); break;
+ }
+ out << type.getNominalSize();
+ }
+ else
+ {
+ if (type.getBasicType() == EbtStruct)
+ out << hashName(type.getStruct()->name());
+ else
+ out << type.getBasicString();
+ }
+ return TString(out.c_str());
+}
+
+TString TOutputGLSLBase::hashName(const TString& name)
+{
+ if (mHashFunction == NULL || name.empty())
+ return name;
+ NameMap::const_iterator it = mNameMap.find(name.c_str());
+ if (it != mNameMap.end())
+ return it->second.c_str();
+ TString hashedName = TIntermTraverser::hash(name, mHashFunction);
+ mNameMap[name.c_str()] = hashedName.c_str();
+ return hashedName;
+}
+
+TString TOutputGLSLBase::hashVariableName(const TString& name)
+{
+ if (mSymbolTable.findBuiltIn(name) != NULL)
+ return name;
+ return hashName(name);
+}
+
+TString TOutputGLSLBase::hashFunctionName(const TString& mangled_name)
+{
+ TString name = TFunction::unmangleName(mangled_name);
+ if (mSymbolTable.findBuiltIn(mangled_name) != NULL || name == "main")
+ return name;
+ return hashName(name);
+}
+
+bool TOutputGLSLBase::structDeclared(const TStructure* structure) const
+{
+ return mDeclaredStructs.find(structure->name()) != mDeclaredStructs.end();
+}
+
+void TOutputGLSLBase::declareStruct(const TStructure* structure)
+{
+ TInfoSinkBase& out = objSink();
+
+ out << "struct " << hashName(structure->name()) << "{\n";
+ const TFieldList& fields = structure->fields();
+ for (size_t i = 0; i < fields.size(); ++i)
+ {
+ const TField* field = fields[i];
+ if (writeVariablePrecision(field->type()->getPrecision()))
+ out << " ";
+ out << getTypeName(*field->type()) << " " << hashName(field->name());
+ if (field->type()->isArray())
+ out << arrayBrackets(*field->type());
+ out << ";\n";
+ }
+ out << "}";
+
+ mDeclaredStructs.insert(structure->name());
+}
--- /dev/null
+//
+// Copyright (c) 2002-2011 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#ifndef CROSSCOMPILERGLSL_OUTPUTGLSLBASE_H_
+#define CROSSCOMPILERGLSL_OUTPUTGLSLBASE_H_
+
+#include <set>
+
+#include "compiler/translator/ForLoopUnroll.h"
+#include "compiler/translator/intermediate.h"
+#include "compiler/translator/ParseContext.h"
+
+class TOutputGLSLBase : public TIntermTraverser
+{
+public:
+ TOutputGLSLBase(TInfoSinkBase& objSink,
+ ShArrayIndexClampingStrategy clampingStrategy,
+ ShHashFunction64 hashFunction,
+ NameMap& nameMap,
+ TSymbolTable& symbolTable);
+
+protected:
+ TInfoSinkBase& objSink() { return mObjSink; }
+ void writeTriplet(Visit visit, const char* preStr, const char* inStr, const char* postStr);
+ void writeVariableType(const TType& type);
+ virtual bool writeVariablePrecision(TPrecision precision) = 0;
+ void writeFunctionParameters(const TIntermSequence& args);
+ const ConstantUnion* writeConstantUnion(const TType& type, const ConstantUnion* pConstUnion);
+ TString getTypeName(const TType& type);
+
+ virtual void visitSymbol(TIntermSymbol* node);
+ virtual void visitConstantUnion(TIntermConstantUnion* node);
+ virtual bool visitBinary(Visit visit, TIntermBinary* node);
+ virtual bool visitUnary(Visit visit, TIntermUnary* node);
+ virtual bool visitSelection(Visit visit, TIntermSelection* node);
+ virtual bool visitAggregate(Visit visit, TIntermAggregate* node);
+ virtual bool visitLoop(Visit visit, TIntermLoop* node);
+ virtual bool visitBranch(Visit visit, TIntermBranch* node);
+
+ void visitCodeBlock(TIntermNode* node);
+
+
+ // Return the original name if hash function pointer is NULL;
+ // otherwise return the hashed name.
+ TString hashName(const TString& name);
+ // Same as hashName(), but without hashing built-in variables.
+ TString hashVariableName(const TString& name);
+ // Same as hashName(), but without hashing built-in functions.
+ TString hashFunctionName(const TString& mangled_name);
+
+private:
+ bool structDeclared(const TStructure* structure) const;
+ void declareStruct(const TStructure* structure);
+
+ TInfoSinkBase& mObjSink;
+ bool mDeclaringVariables;
+
+ // Structs are declared as the tree is traversed. This set contains all
+ // the structs already declared. It is maintained so that a struct is
+ // declared only once.
+ typedef std::set<TString> DeclaredStructs;
+ DeclaredStructs mDeclaredStructs;
+
+ ForLoopUnroll mLoopUnroll;
+
+ ShArrayIndexClampingStrategy mClampingStrategy;
+
+ // name hashing.
+ ShHashFunction64 mHashFunction;
+
+ NameMap& mNameMap;
+
+ TSymbolTable& mSymbolTable;
+};
+
+#endif // CROSSCOMPILERGLSL_OUTPUTGLSLBASE_H_
--- /dev/null
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/OutputHLSL.h"
+
+#include "common/angleutils.h"
+#include "compiler/translator/compilerdebug.h"
+#include "compiler/translator/DetectDiscontinuity.h"
+#include "compiler/translator/InfoSink.h"
+#include "compiler/translator/SearchSymbol.h"
+#include "compiler/translator/UnfoldShortCircuit.h"
+#include "compiler/translator/NodeSearch.h"
+#include "compiler/translator/RewriteElseBlocks.h"
+
+#include <algorithm>
+#include <cfloat>
+#include <stdio.h>
+
+namespace sh
+{
+
+OutputHLSL::OutputHLSL(TParseContext &context, const ShBuiltInResources& resources, ShShaderOutput outputType)
+ : TIntermTraverser(true, true, true), mContext(context), mOutputType(outputType)
+{
+ mUnfoldShortCircuit = new UnfoldShortCircuit(context, this);
+ mInsideFunction = false;
+
+ mUsesTexture2D = false;
+ mUsesTexture2D_bias = false;
+ mUsesTexture2DProj = false;
+ mUsesTexture2DProj_bias = false;
+ mUsesTexture2DProjLod = false;
+ mUsesTexture2DLod = false;
+ mUsesTextureCube = false;
+ mUsesTextureCube_bias = false;
+ mUsesTextureCubeLod = false;
+ mUsesTexture2DLod0 = false;
+ mUsesTexture2DLod0_bias = false;
+ mUsesTexture2DProjLod0 = false;
+ mUsesTexture2DProjLod0_bias = false;
+ mUsesTextureCubeLod0 = false;
+ mUsesTextureCubeLod0_bias = false;
+ mUsesFragColor = false;
+ mUsesFragData = false;
+ mUsesDepthRange = false;
+ mUsesFragCoord = false;
+ mUsesPointCoord = false;
+ mUsesFrontFacing = false;
+ mUsesPointSize = false;
+ mUsesFragDepth = false;
+ mUsesXor = false;
+ mUsesMod1 = false;
+ mUsesMod2v = false;
+ mUsesMod2f = false;
+ mUsesMod3v = false;
+ mUsesMod3f = false;
+ mUsesMod4v = false;
+ mUsesMod4f = false;
+ mUsesFaceforward1 = false;
+ mUsesFaceforward2 = false;
+ mUsesFaceforward3 = false;
+ mUsesFaceforward4 = false;
+ mUsesAtan2_1 = false;
+ mUsesAtan2_2 = false;
+ mUsesAtan2_3 = false;
+ mUsesAtan2_4 = false;
+ mUsesDiscardRewriting = false;
+
+ mNumRenderTargets = resources.EXT_draw_buffers ? resources.MaxDrawBuffers : 1;
+
+ mScopeDepth = 0;
+
+ mUniqueIndex = 0;
+
+ mContainsLoopDiscontinuity = false;
+ mOutputLod0Function = false;
+ mInsideDiscontinuousLoop = false;
+
+ mExcessiveLoopIndex = NULL;
+
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ if (mContext.shaderType == SH_FRAGMENT_SHADER)
+ {
+ mUniformRegister = 3; // Reserve registers for dx_DepthRange, dx_ViewCoords and dx_DepthFront
+ }
+ else
+ {
+ mUniformRegister = 2; // Reserve registers for dx_DepthRange and dx_ViewAdjust
+ }
+ }
+ else
+ {
+ mUniformRegister = 0;
+ }
+
+ mSamplerRegister = 0;
+}
+
+OutputHLSL::~OutputHLSL()
+{
+ delete mUnfoldShortCircuit;
+}
+
+void OutputHLSL::output()
+{
+ mContainsLoopDiscontinuity = mContext.shaderType == SH_FRAGMENT_SHADER && containsLoopDiscontinuity(mContext.treeRoot);
+
+ // Work around D3D9 bug that would manifest in vertex shaders with selection blocks which
+ // use a vertex attribute as a condition, and some related computation in the else block.
+ if (mOutputType == SH_HLSL9_OUTPUT && mContext.shaderType == SH_VERTEX_SHADER)
+ {
+ RewriteElseBlocks(mContext.treeRoot);
+ }
+
+ mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header
+ header();
+
+ mContext.infoSink().obj << mHeader.c_str();
+ mContext.infoSink().obj << mBody.c_str();
+}
+
+TInfoSinkBase &OutputHLSL::getBodyStream()
+{
+ return mBody;
+}
+
+const ActiveUniforms &OutputHLSL::getUniforms()
+{
+ return mActiveUniforms;
+}
+
+int OutputHLSL::vectorSize(const TType &type) const
+{
+ int elementSize = type.isMatrix() ? type.getNominalSize() : 1;
+ int arraySize = type.isArray() ? type.getArraySize() : 1;
+
+ return elementSize * arraySize;
+}
+
+void OutputHLSL::header()
+{
+ ShShaderType shaderType = mContext.shaderType;
+ TInfoSinkBase &out = mHeader;
+
+ for (StructDeclarations::iterator structDeclaration = mStructDeclarations.begin(); structDeclaration != mStructDeclarations.end(); structDeclaration++)
+ {
+ out << *structDeclaration;
+ }
+
+ for (Constructors::iterator constructor = mConstructors.begin(); constructor != mConstructors.end(); constructor++)
+ {
+ out << *constructor;
+ }
+
+ TString uniforms;
+ TString varyings;
+ TString attributes;
+
+ for (ReferencedSymbols::const_iterator uniform = mReferencedUniforms.begin(); uniform != mReferencedUniforms.end(); uniform++)
+ {
+ const TType &type = uniform->second->getType();
+ const TString &name = uniform->second->getSymbol();
+
+ if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType())) // Also declare the texture
+ {
+ int index = samplerRegister(mReferencedUniforms[name]);
+
+ uniforms += "uniform SamplerState sampler_" + decorateUniform(name, type) + arrayString(type) +
+ " : register(s" + str(index) + ");\n";
+
+ uniforms += "uniform " + textureString(type) + " texture_" + decorateUniform(name, type) + arrayString(type) +
+ " : register(t" + str(index) + ");\n";
+ }
+ else
+ {
+ uniforms += "uniform " + typeString(type) + " " + decorateUniform(name, type) + arrayString(type) +
+ " : register(" + registerString(mReferencedUniforms[name]) + ");\n";
+ }
+ }
+
+ for (ReferencedSymbols::const_iterator varying = mReferencedVaryings.begin(); varying != mReferencedVaryings.end(); varying++)
+ {
+ const TType &type = varying->second->getType();
+ const TString &name = varying->second->getSymbol();
+
+ // Program linking depends on this exact format
+ varyings += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
+ }
+
+ for (ReferencedSymbols::const_iterator attribute = mReferencedAttributes.begin(); attribute != mReferencedAttributes.end(); attribute++)
+ {
+ const TType &type = attribute->second->getType();
+ const TString &name = attribute->second->getSymbol();
+
+ attributes += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
+ }
+
+ if (mUsesDiscardRewriting)
+ {
+ out << "#define ANGLE_USES_DISCARD_REWRITING" << "\n";
+ }
+
+ if (shaderType == SH_FRAGMENT_SHADER)
+ {
+ TExtensionBehavior::const_iterator iter = mContext.extensionBehavior().find("GL_EXT_draw_buffers");
+ const bool usingMRTExtension = (iter != mContext.extensionBehavior().end() && (iter->second == EBhEnable || iter->second == EBhRequire));
+
+ const unsigned int numColorValues = usingMRTExtension ? mNumRenderTargets : 1;
+
+ out << "// Varyings\n";
+ out << varyings;
+ out << "\n"
+ "static float4 gl_Color[" << numColorValues << "] =\n"
+ "{\n";
+ for (unsigned int i = 0; i < numColorValues; i++)
+ {
+ out << " float4(0, 0, 0, 0)";
+ if (i + 1 != numColorValues)
+ {
+ out << ",";
+ }
+ out << "\n";
+ }
+ out << "};\n";
+
+ if (mUsesFragDepth)
+ {
+ out << "static float gl_Depth = 0.0;\n";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n";
+ }
+
+ if (mUsesPointCoord)
+ {
+ out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n";
+ }
+
+ if (mUsesFrontFacing)
+ {
+ out << "static bool gl_FrontFacing = false;\n";
+ }
+
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "struct gl_DepthRangeParameters\n"
+ "{\n"
+ " float near;\n"
+ " float far;\n"
+ " float diff;\n"
+ "};\n"
+ "\n";
+ }
+
+ if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "cbuffer DriverConstants : register(b1)\n"
+ "{\n";
+
+ if (mUsesDepthRange)
+ {
+ out << " float3 dx_DepthRange : packoffset(c0);\n";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << " float4 dx_ViewCoords : packoffset(c1);\n";
+ }
+
+ if (mUsesFragCoord || mUsesFrontFacing)
+ {
+ out << " float3 dx_DepthFront : packoffset(c2);\n";
+ }
+
+ out << "};\n";
+ }
+ else
+ {
+ if (mUsesDepthRange)
+ {
+ out << "uniform float3 dx_DepthRange : register(c0);";
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "uniform float4 dx_ViewCoords : register(c1);\n";
+ }
+
+ if (mUsesFragCoord || mUsesFrontFacing)
+ {
+ out << "uniform float3 dx_DepthFront : register(c2);\n";
+ }
+ }
+
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
+ "\n";
+ }
+
+ out << uniforms;
+ out << "\n";
+
+ if (mUsesTexture2D)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2D(sampler2D s, float2 t)\n"
+ "{\n"
+ " return tex2D(s, t);\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2D(Texture2D t, SamplerState s, float2 uv)\n"
+ "{\n"
+ " return t.Sample(s, uv);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2D_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2D(sampler2D s, float2 t, float bias)\n"
+ "{\n"
+ " return tex2Dbias(s, float4(t.x, t.y, 0, bias));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2D(Texture2D t, SamplerState s, float2 uv, float bias)\n"
+ "{\n"
+ " return t.SampleBias(s, uv, bias);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProj)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n"
+ "{\n"
+ " return tex2Dproj(s, float4(t.x, t.y, 0, t.z));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(sampler2D s, float4 t)\n"
+ "{\n"
+ " return tex2Dproj(s, t);\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(Texture2D t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.Sample(s, float2(uvw.x / uvw.z, uvw.y / uvw.z));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(Texture2D t, SamplerState s, float4 uvw)\n"
+ "{\n"
+ " return t.Sample(s, float2(uvw.x / uvw.w, uvw.y / uvw.w));\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProj_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(sampler2D s, float3 t, float bias)\n"
+ "{\n"
+ " return tex2Dbias(s, float4(t.x / t.z, t.y / t.z, 0, bias));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(sampler2D s, float4 t, float bias)\n"
+ "{\n"
+ " return tex2Dbias(s, float4(t.x / t.w, t.y / t.w, 0, bias));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(Texture2D t, SamplerState s, float3 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleBias(s, float2(uvw.x / uvw.z, uvw.y / uvw.z), bias);\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(Texture2D t, SamplerState s, float4 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleBias(s, float2(uvw.x / uvw.w, uvw.y / uvw.w), bias);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCube)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n"
+ "{\n"
+ " return texCUBE(s, t);\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCube(TextureCube t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.Sample(s, uvw);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCube_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCube(samplerCUBE s, float3 t, float bias)\n"
+ "{\n"
+ " return texCUBEbias(s, float4(t.x, t.y, t.z, bias));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCube(TextureCube t, SamplerState s, float3 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleBias(s, uvw, bias);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ // These *Lod0 intrinsics are not available in GL fragment shaders.
+ // They are used to sample using discontinuous texture coordinates.
+ if (mUsesTexture2DLod0)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod0(sampler2D s, float2 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x, t.y, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod0(Texture2D t, SamplerState s, float2 uv)\n"
+ "{\n"
+ " return t.SampleLevel(s, uv, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DLod0_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod0(sampler2D s, float2 t, float bias)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x, t.y, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod0(Texture2D t, SamplerState s, float2 uv, float bias)\n"
+ "{\n"
+ " return t.SampleLevel(s, uv, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProjLod0)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod0(sampler2D s, float3 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.z, t.y / t.z, 0, 0));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod(sampler2D s, float4 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.w, t.y / t.w, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod0(Texture2D t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.z, uvw.y / uvw.z), 0);\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod0(Texture2D t, SamplerState s, float4 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.w, uvw.y / uvw.w), 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProjLod0_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod0_bias(sampler2D s, float3 t, float bias)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.z, t.y / t.z, 0, 0));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod_bias(sampler2D s, float4 t, float bias)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.w, t.y / t.w, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod_bias(Texture2D t, SamplerState s, float3 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.z, uvw.y / uvw.z), 0);\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod_bias(Texture2D t, SamplerState s, float4 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.w, uvw.y / uvw.w), 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCubeLod0)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod0(samplerCUBE s, float3 t)\n"
+ "{\n"
+ " return texCUBElod(s, float4(t.x, t.y, t.z, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod0(TextureCube t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, uvw, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCubeLod0_bias)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod0(samplerCUBE s, float3 t, float bias)\n"
+ "{\n"
+ " return texCUBElod(s, float4(t.x, t.y, t.z, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod0(TextureCube t, SamplerState s, float3 uvw, float bias)\n"
+ "{\n"
+ " return t.SampleLevel(s, uvw, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (usingMRTExtension && mNumRenderTargets > 1)
+ {
+ out << "#define GL_USES_MRT\n";
+ }
+
+ if (mUsesFragColor)
+ {
+ out << "#define GL_USES_FRAG_COLOR\n";
+ }
+
+ if (mUsesFragData)
+ {
+ out << "#define GL_USES_FRAG_DATA\n";
+ }
+ }
+ else // Vertex shader
+ {
+ out << "// Attributes\n";
+ out << attributes;
+ out << "\n"
+ "static float4 gl_Position = float4(0, 0, 0, 0);\n";
+
+ if (mUsesPointSize)
+ {
+ out << "static float gl_PointSize = float(1);\n";
+ }
+
+ out << "\n"
+ "// Varyings\n";
+ out << varyings;
+ out << "\n";
+
+ if (mUsesDepthRange)
+ {
+ out << "struct gl_DepthRangeParameters\n"
+ "{\n"
+ " float near;\n"
+ " float far;\n"
+ " float diff;\n"
+ "};\n"
+ "\n";
+ }
+
+ if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ if (mUsesDepthRange)
+ {
+ out << "cbuffer DriverConstants : register(b1)\n"
+ "{\n"
+ " float3 dx_DepthRange : packoffset(c0);\n"
+ "};\n"
+ "\n";
+ }
+ }
+ else
+ {
+ if (mUsesDepthRange)
+ {
+ out << "uniform float3 dx_DepthRange : register(c0);\n";
+ }
+
+ out << "uniform float4 dx_ViewAdjust : register(c1);\n"
+ "\n";
+ }
+
+ if (mUsesDepthRange)
+ {
+ out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
+ "\n";
+ }
+
+ out << uniforms;
+ out << "\n";
+
+ if (mUsesTexture2D)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2D(sampler2D s, float2 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x, t.y, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2D(Texture2D t, SamplerState s, float2 uv)\n"
+ "{\n"
+ " return t.SampleLevel(s, uv, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DLod)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod(sampler2D s, float2 t, float lod)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x, t.y, 0, lod));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DLod(Texture2D t, SamplerState s, float2 uv, float lod)\n"
+ "{\n"
+ " return t.SampleLevel(s, uv, lod);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProj)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.z, t.y / t.z, 0, 0));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(sampler2D s, float4 t)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.w, t.y / t.w, 0, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProj(Texture2D t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.z, uvw.y / uvw.z), 0);\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProj(Texture2D t, SamplerState s, float4 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.w, uvw.y / uvw.w), 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTexture2DProjLod)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod(sampler2D s, float3 t, float lod)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.z, t.y / t.z, 0, lod));\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod(sampler2D s, float4 t, float lod)\n"
+ "{\n"
+ " return tex2Dlod(s, float4(t.x / t.w, t.y / t.w, 0, lod));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_texture2DProjLod(Texture2D t, SamplerState s, float3 uvw, float lod)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.z, uvw.y / uvw.z), lod);\n"
+ "}\n"
+ "\n"
+ "float4 gl_texture2DProjLod(Texture2D t, SamplerState s, float4 uvw, float lod)\n"
+ "{\n"
+ " return t.SampleLevel(s, float2(uvw.x / uvw.w, uvw.y / uvw.w), lod);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCube)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n"
+ "{\n"
+ " return texCUBElod(s, float4(t.x, t.y, t.z, 0));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCube(TextureCube t, SamplerState s, float3 uvw)\n"
+ "{\n"
+ " return t.SampleLevel(s, uvw, 0);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+
+ if (mUsesTextureCubeLod)
+ {
+ if (mOutputType == SH_HLSL9_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod(samplerCUBE s, float3 t, float lod)\n"
+ "{\n"
+ " return texCUBElod(s, float4(t.x, t.y, t.z, lod));\n"
+ "}\n"
+ "\n";
+ }
+ else if (mOutputType == SH_HLSL11_OUTPUT)
+ {
+ out << "float4 gl_textureCubeLod(TextureCube t, SamplerState s, float3 uvw, float lod)\n"
+ "{\n"
+ " return t.SampleLevel(s, uvw, lod);\n"
+ "}\n"
+ "\n";
+ }
+ else UNREACHABLE();
+ }
+ }
+
+ if (mUsesFragCoord)
+ {
+ out << "#define GL_USES_FRAG_COORD\n";
+ }
+
+ if (mUsesPointCoord)
+ {
+ out << "#define GL_USES_POINT_COORD\n";
+ }
+
+ if (mUsesFrontFacing)
+ {
+ out << "#define GL_USES_FRONT_FACING\n";
+ }
+
+ if (mUsesPointSize)
+ {
+ out << "#define GL_USES_POINT_SIZE\n";
+ }
+
+ if (mUsesFragDepth)
+ {
+ out << "#define GL_USES_FRAG_DEPTH\n";
+ }
+
+ if (mUsesDepthRange)
+ {
+ out << "#define GL_USES_DEPTH_RANGE\n";
+ }
+
+ if (mUsesXor)
+ {
+ out << "bool xor(bool p, bool q)\n"
+ "{\n"
+ " return (p || q) && !(p && q);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod1)
+ {
+ out << "float mod(float x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod2v)
+ {
+ out << "float2 mod(float2 x, float2 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod2f)
+ {
+ out << "float2 mod(float2 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod3v)
+ {
+ out << "float3 mod(float3 x, float3 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod3f)
+ {
+ out << "float3 mod(float3 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod4v)
+ {
+ out << "float4 mod(float4 x, float4 y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesMod4f)
+ {
+ out << "float4 mod(float4 x, float y)\n"
+ "{\n"
+ " return x - y * floor(x / y);\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward1)
+ {
+ out << "float faceforward(float N, float I, float Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward2)
+ {
+ out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward3)
+ {
+ out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesFaceforward4)
+ {
+ out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n"
+ "{\n"
+ " if(dot(Nref, I) >= 0)\n"
+ " {\n"
+ " return -N;\n"
+ " }\n"
+ " else\n"
+ " {\n"
+ " return N;\n"
+ " }\n"
+ "}\n"
+ "\n";
+ }
+
+ if (mUsesAtan2_1)
+ {
+ out << "float atanyx(float y, float x)\n"
+ "{\n"
+ " if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN
+ " return atan2(y, x);\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_2)
+ {
+ out << "float2 atanyx(float2 y, float2 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " return float2(atan2(y[0], x[0]), atan2(y[1], x[1]));\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_3)
+ {
+ out << "float3 atanyx(float3 y, float3 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
+ " return float3(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]));\n"
+ "}\n";
+ }
+
+ if (mUsesAtan2_4)
+ {
+ out << "float4 atanyx(float4 y, float4 x)\n"
+ "{\n"
+ " if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
+ " if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
+ " if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
+ " if(x[3] == 0 && y[3] == 0) x[3] = 1;\n"
+ " return float4(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]), atan2(y[3], x[3]));\n"
+ "}\n";
+ }
+}
+
+void OutputHLSL::visitSymbol(TIntermSymbol *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ TString name = node->getSymbol();
+
+ if (name == "gl_FragColor")
+ {
+ out << "gl_Color[0]";
+ mUsesFragColor = true;
+ }
+ else if (name == "gl_FragData")
+ {
+ out << "gl_Color";
+ mUsesFragData = true;
+ }
+ else if (name == "gl_DepthRange")
+ {
+ mUsesDepthRange = true;
+ out << name;
+ }
+ else if (name == "gl_FragCoord")
+ {
+ mUsesFragCoord = true;
+ out << name;
+ }
+ else if (name == "gl_PointCoord")
+ {
+ mUsesPointCoord = true;
+ out << name;
+ }
+ else if (name == "gl_FrontFacing")
+ {
+ mUsesFrontFacing = true;
+ out << name;
+ }
+ else if (name == "gl_PointSize")
+ {
+ mUsesPointSize = true;
+ out << name;
+ }
+ else if (name == "gl_FragDepthEXT")
+ {
+ mUsesFragDepth = true;
+ out << "gl_Depth";
+ }
+ else
+ {
+ TQualifier qualifier = node->getQualifier();
+
+ if (qualifier == EvqUniform)
+ {
+ mReferencedUniforms[name] = node;
+ out << decorateUniform(name, node->getType());
+ }
+ else if (qualifier == EvqAttribute)
+ {
+ mReferencedAttributes[name] = node;
+ out << decorate(name);
+ }
+ else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut || qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
+ {
+ mReferencedVaryings[name] = node;
+ out << decorate(name);
+ }
+ else if (qualifier == EvqInternal)
+ {
+ out << name;
+ }
+ else
+ {
+ out << decorate(name);
+ }
+ }
+}
+
+bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
+{
+ TInfoSinkBase &out = mBody;
+
+ switch (node->getOp())
+ {
+ case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
+ case EOpInitialize:
+ if (visit == PreVisit)
+ {
+ // GLSL allows to write things like "float x = x;" where a new variable x is defined
+ // and the value of an existing variable x is assigned. HLSL uses C semantics (the
+ // new variable is created before the assignment is evaluated), so we need to convert
+ // this to "float t = x, x = t;".
+
+ TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
+ TIntermTyped *expression = node->getRight();
+
+ sh::SearchSymbol searchSymbol(symbolNode->getSymbol());
+ expression->traverse(&searchSymbol);
+ bool sameSymbol = searchSymbol.foundMatch();
+
+ if (sameSymbol)
+ {
+ // Type already printed
+ out << "t" + str(mUniqueIndex) + " = ";
+ expression->traverse(this);
+ out << ", ";
+ symbolNode->traverse(this);
+ out << " = t" + str(mUniqueIndex);
+
+ mUniqueIndex++;
+ return false;
+ }
+ }
+ else if (visit == InVisit)
+ {
+ out << " = ";
+ }
+ break;
+ case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
+ case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
+ case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
+ case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", "