Add JetStream to PerformanceTests
[WebKit-https.git] / PerformanceTests / JetStream / Octane2 / crypto.js
1 /*
2  * Copyright (c) 2003-2005  Tom Wu
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining
6  * a copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be
14  * included in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
17  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
18  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
19  *
20  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
21  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
22  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
23  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
24  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25  *
26  * In addition, the following condition applies:
27  *
28  * All redistributions must retain an intact copy of this copyright notice
29  * and disclaimer.
30  */
31
32
33 // The code has been adapted for use as a benchmark by Google.
34 var Crypto = new BenchmarkSuite('Crypto', [266181], [
35   new Benchmark("Encrypt", true, false, encrypt),
36   new Benchmark("Decrypt", true, false, decrypt)
37 ]);
38
39
40 // Basic JavaScript BN library - subset useful for RSA encryption.
41
42 // Bits per digit
43 var dbits;
44 var BI_DB;
45 var BI_DM;
46 var BI_DV;
47
48 var BI_FP;
49 var BI_FV;
50 var BI_F1;
51 var BI_F2;
52
53 // JavaScript engine analysis
54 var canary = 0xdeadbeefcafe;
55 var j_lm = ((canary&0xffffff)==0xefcafe);
56
57 // (public) Constructor
58 function BigInteger(a,b,c) {
59   this.array = new Array();
60   if(a != null)
61     if("number" == typeof a) this.fromNumber(a,b,c);
62     else if(b == null && "string" != typeof a) this.fromString(a,256);
63     else this.fromString(a,b);
64 }
65
66 // return new, unset BigInteger
67 function nbi() { return new BigInteger(null); }
68
69 // am: Compute w_j += (x*this_i), propagate carries,
70 // c is initial carry, returns final carry.
71 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
72 // We need to select the fastest one that works in this environment.
73
74 // am1: use a single mult and divide to get the high bits,
75 // max digit bits should be 26 because
76 // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
77 function am1(i,x,w,j,c,n) {
78   var this_array = this.array;
79   var w_array    = w.array;
80   while(--n >= 0) {
81     var v = x*this_array[i++]+w_array[j]+c;
82     c = Math.floor(v/0x4000000);
83     w_array[j++] = v&0x3ffffff;
84   }
85   return c;
86 }
87
88 // am2 avoids a big mult-and-extract completely.
89 // Max digit bits should be <= 30 because we do bitwise ops
90 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
91 function am2(i,x,w,j,c,n) {
92   var this_array = this.array;
93   var w_array    = w.array;
94   var xl = x&0x7fff, xh = x>>15;
95   while(--n >= 0) {
96     var l = this_array[i]&0x7fff;
97     var h = this_array[i++]>>15;
98     var m = xh*l+h*xl;
99     l = xl*l+((m&0x7fff)<<15)+w_array[j]+(c&0x3fffffff);
100     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
101     w_array[j++] = l&0x3fffffff;
102   }
103   return c;
104 }
105
106 // Alternately, set max digit bits to 28 since some
107 // browsers slow down when dealing with 32-bit numbers.
108 function am3(i,x,w,j,c,n) {
109   var this_array = this.array;
110   var w_array    = w.array;
111
112   var xl = x&0x3fff, xh = x>>14;
113   while(--n >= 0) {
114     var l = this_array[i]&0x3fff;
115     var h = this_array[i++]>>14;
116     var m = xh*l+h*xl;
117     l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
118     c = (l>>28)+(m>>14)+xh*h;
119     w_array[j++] = l&0xfffffff;
120   }
121   return c;
122 }
123
124 // This is tailored to VMs with 2-bit tagging. It makes sure
125 // that all the computations stay within the 29 bits available.
126 function am4(i,x,w,j,c,n) {
127   var this_array = this.array;
128   var w_array    = w.array;
129
130   var xl = x&0x1fff, xh = x>>13;
131   while(--n >= 0) {
132     var l = this_array[i]&0x1fff;
133     var h = this_array[i++]>>13;
134     var m = xh*l+h*xl;
135     l = xl*l+((m&0x1fff)<<13)+w_array[j]+c;
136     c = (l>>26)+(m>>13)+xh*h;
137     w_array[j++] = l&0x3ffffff;
138   }
139   return c;
140 }
141
142 // am3/28 is best for SM, Rhino, but am4/26 is best for v8.
143 // Kestrel (Opera 9.5) gets its best result with am4/26.
144 // IE7 does 9% better with am3/28 than with am4/26.
145 // Firefox (SM) gets 10% faster with am3/28 than with am4/26.
146
147 setupEngine = function(fn, bits) {
148   BigInteger.prototype.am = fn;
149   dbits = bits;
150
151   BI_DB = dbits;
152   BI_DM = ((1<<dbits)-1);
153   BI_DV = (1<<dbits);
154
155   BI_FP = 52;
156   BI_FV = Math.pow(2,BI_FP);
157   BI_F1 = BI_FP-dbits;
158   BI_F2 = 2*dbits-BI_FP;
159 }
160
161
162 // Digit conversions
163 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
164 var BI_RC = new Array();
165 var rr,vv;
166 rr = "0".charCodeAt(0);
167 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
168 rr = "a".charCodeAt(0);
169 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
170 rr = "A".charCodeAt(0);
171 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
172
173 function int2char(n) { return BI_RM.charAt(n); }
174 function intAt(s,i) {
175   var c = BI_RC[s.charCodeAt(i)];
176   return (c==null)?-1:c;
177 }
178
179 // (protected) copy this to r
180 function bnpCopyTo(r) {
181   var this_array = this.array;
182   var r_array    = r.array;
183
184   for(var i = this.t-1; i >= 0; --i) r_array[i] = this_array[i];
185   r.t = this.t;
186   r.s = this.s;
187 }
188
189 // (protected) set from integer value x, -DV <= x < DV
190 function bnpFromInt(x) {
191   var this_array = this.array;
192   this.t = 1;
193   this.s = (x<0)?-1:0;
194   if(x > 0) this_array[0] = x;
195   else if(x < -1) this_array[0] = x+DV;
196   else this.t = 0;
197 }
198
199 // return bigint initialized to value
200 function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
201
202 // (protected) set from string and radix
203 function bnpFromString(s,b) {
204   var this_array = this.array;
205   var k;
206   if(b == 16) k = 4;
207   else if(b == 8) k = 3;
208   else if(b == 256) k = 8; // byte array
209   else if(b == 2) k = 1;
210   else if(b == 32) k = 5;
211   else if(b == 4) k = 2;
212   else { this.fromRadix(s,b); return; }
213   this.t = 0;
214   this.s = 0;
215   var i = s.length, mi = false, sh = 0;
216   while(--i >= 0) {
217     var x = (k==8)?s[i]&0xff:intAt(s,i);
218     if(x < 0) {
219       if(s.charAt(i) == "-") mi = true;
220       continue;
221     }
222     mi = false;
223     if(sh == 0)
224       this_array[this.t++] = x;
225     else if(sh+k > BI_DB) {
226       this_array[this.t-1] |= (x&((1<<(BI_DB-sh))-1))<<sh;
227       this_array[this.t++] = (x>>(BI_DB-sh));
228     }
229     else
230       this_array[this.t-1] |= x<<sh;
231     sh += k;
232     if(sh >= BI_DB) sh -= BI_DB;
233   }
234   if(k == 8 && (s[0]&0x80) != 0) {
235     this.s = -1;
236     if(sh > 0) this_array[this.t-1] |= ((1<<(BI_DB-sh))-1)<<sh;
237   }
238   this.clamp();
239   if(mi) BigInteger.ZERO.subTo(this,this);
240 }
241
242 // (protected) clamp off excess high words
243 function bnpClamp() {
244   var this_array = this.array;
245   var c = this.s&BI_DM;
246   while(this.t > 0 && this_array[this.t-1] == c) --this.t;
247 }
248
249 // (public) return string representation in given radix
250 function bnToString(b) {
251   var this_array = this.array;
252   if(this.s < 0) return "-"+this.negate().toString(b);
253   var k;
254   if(b == 16) k = 4;
255   else if(b == 8) k = 3;
256   else if(b == 2) k = 1;
257   else if(b == 32) k = 5;
258   else if(b == 4) k = 2;
259   else return this.toRadix(b);
260   var km = (1<<k)-1, d, m = false, r = "", i = this.t;
261   var p = BI_DB-(i*BI_DB)%k;
262   if(i-- > 0) {
263     if(p < BI_DB && (d = this_array[i]>>p) > 0) { m = true; r = int2char(d); }
264     while(i >= 0) {
265       if(p < k) {
266         d = (this_array[i]&((1<<p)-1))<<(k-p);
267         d |= this_array[--i]>>(p+=BI_DB-k);
268       }
269       else {
270         d = (this_array[i]>>(p-=k))&km;
271         if(p <= 0) { p += BI_DB; --i; }
272       }
273       if(d > 0) m = true;
274       if(m) r += int2char(d);
275     }
276   }
277   return m?r:"0";
278 }
279
280 // (public) -this
281 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
282
283 // (public) |this|
284 function bnAbs() { return (this.s<0)?this.negate():this; }
285
286 // (public) return + if this > a, - if this < a, 0 if equal
287 function bnCompareTo(a) {
288   var this_array = this.array;
289   var a_array = a.array;
290
291   var r = this.s-a.s;
292   if(r != 0) return r;
293   var i = this.t;
294   r = i-a.t;
295   if(r != 0) return r;
296   while(--i >= 0) if((r=this_array[i]-a_array[i]) != 0) return r;
297   return 0;
298 }
299
300 // returns bit length of the integer x
301 function nbits(x) {
302   var r = 1, t;
303   if((t=x>>>16) != 0) { x = t; r += 16; }
304   if((t=x>>8) != 0) { x = t; r += 8; }
305   if((t=x>>4) != 0) { x = t; r += 4; }
306   if((t=x>>2) != 0) { x = t; r += 2; }
307   if((t=x>>1) != 0) { x = t; r += 1; }
308   return r;
309 }
310
311 // (public) return the number of bits in "this"
312 function bnBitLength() {
313   var this_array = this.array;
314   if(this.t <= 0) return 0;
315   return BI_DB*(this.t-1)+nbits(this_array[this.t-1]^(this.s&BI_DM));
316 }
317
318 // (protected) r = this << n*DB
319 function bnpDLShiftTo(n,r) {
320   var this_array = this.array;
321   var r_array = r.array;
322   var i;
323   for(i = this.t-1; i >= 0; --i) r_array[i+n] = this_array[i];
324   for(i = n-1; i >= 0; --i) r_array[i] = 0;
325   r.t = this.t+n;
326   r.s = this.s;
327 }
328
329 // (protected) r = this >> n*DB
330 function bnpDRShiftTo(n,r) {
331   var this_array = this.array;
332   var r_array = r.array;
333   for(var i = n; i < this.t; ++i) r_array[i-n] = this_array[i];
334   r.t = Math.max(this.t-n,0);
335   r.s = this.s;
336 }
337
338 // (protected) r = this << n
339 function bnpLShiftTo(n,r) {
340   var this_array = this.array;
341   var r_array = r.array;
342   var bs = n%BI_DB;
343   var cbs = BI_DB-bs;
344   var bm = (1<<cbs)-1;
345   var ds = Math.floor(n/BI_DB), c = (this.s<<bs)&BI_DM, i;
346   for(i = this.t-1; i >= 0; --i) {
347     r_array[i+ds+1] = (this_array[i]>>cbs)|c;
348     c = (this_array[i]&bm)<<bs;
349   }
350   for(i = ds-1; i >= 0; --i) r_array[i] = 0;
351   r_array[ds] = c;
352   r.t = this.t+ds+1;
353   r.s = this.s;
354   r.clamp();
355 }
356
357 // (protected) r = this >> n
358 function bnpRShiftTo(n,r) {
359   var this_array = this.array;
360   var r_array = r.array;
361   r.s = this.s;
362   var ds = Math.floor(n/BI_DB);
363   if(ds >= this.t) { r.t = 0; return; }
364   var bs = n%BI_DB;
365   var cbs = BI_DB-bs;
366   var bm = (1<<bs)-1;
367   r_array[0] = this_array[ds]>>bs;
368   for(var i = ds+1; i < this.t; ++i) {
369     r_array[i-ds-1] |= (this_array[i]&bm)<<cbs;
370     r_array[i-ds] = this_array[i]>>bs;
371   }
372   if(bs > 0) r_array[this.t-ds-1] |= (this.s&bm)<<cbs;
373   r.t = this.t-ds;
374   r.clamp();
375 }
376
377 // (protected) r = this - a
378 function bnpSubTo(a,r) {
379   var this_array = this.array;
380   var r_array = r.array;
381   var a_array = a.array;
382   var i = 0, c = 0, m = Math.min(a.t,this.t);
383   while(i < m) {
384     c += this_array[i]-a_array[i];
385     r_array[i++] = c&BI_DM;
386     c >>= BI_DB;
387   }
388   if(a.t < this.t) {
389     c -= a.s;
390     while(i < this.t) {
391       c += this_array[i];
392       r_array[i++] = c&BI_DM;
393       c >>= BI_DB;
394     }
395     c += this.s;
396   }
397   else {
398     c += this.s;
399     while(i < a.t) {
400       c -= a_array[i];
401       r_array[i++] = c&BI_DM;
402       c >>= BI_DB;
403     }
404     c -= a.s;
405   }
406   r.s = (c<0)?-1:0;
407   if(c < -1) r_array[i++] = BI_DV+c;
408   else if(c > 0) r_array[i++] = c;
409   r.t = i;
410   r.clamp();
411 }
412
413 // (protected) r = this * a, r != this,a (HAC 14.12)
414 // "this" should be the larger one if appropriate.
415 function bnpMultiplyTo(a,r) {
416   var this_array = this.array;
417   var r_array = r.array;
418   var x = this.abs(), y = a.abs();
419   var y_array = y.array;
420
421   var i = x.t;
422   r.t = i+y.t;
423   while(--i >= 0) r_array[i] = 0;
424   for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
425   r.s = 0;
426   r.clamp();
427   if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
428 }
429
430 // (protected) r = this^2, r != this (HAC 14.16)
431 function bnpSquareTo(r) {
432   var x = this.abs();
433   var x_array = x.array;
434   var r_array = r.array;
435
436   var i = r.t = 2*x.t;
437   while(--i >= 0) r_array[i] = 0;
438   for(i = 0; i < x.t-1; ++i) {
439     var c = x.am(i,x_array[i],r,2*i,0,1);
440     if((r_array[i+x.t]+=x.am(i+1,2*x_array[i],r,2*i+1,c,x.t-i-1)) >= BI_DV) {
441       r_array[i+x.t] -= BI_DV;
442       r_array[i+x.t+1] = 1;
443     }
444   }
445   if(r.t > 0) r_array[r.t-1] += x.am(i,x_array[i],r,2*i,0,1);
446   r.s = 0;
447   r.clamp();
448 }
449
450 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
451 // r != q, this != m.  q or r may be null.
452 function bnpDivRemTo(m,q,r) {
453   var pm = m.abs();
454   if(pm.t <= 0) return;
455   var pt = this.abs();
456   if(pt.t < pm.t) {
457     if(q != null) q.fromInt(0);
458     if(r != null) this.copyTo(r);
459     return;
460   }
461   if(r == null) r = nbi();
462   var y = nbi(), ts = this.s, ms = m.s;
463   var pm_array = pm.array;
464   var nsh = BI_DB-nbits(pm_array[pm.t-1]);      // normalize modulus
465   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
466   else { pm.copyTo(y); pt.copyTo(r); }
467   var ys = y.t;
468
469   var y_array = y.array;
470   var y0 = y_array[ys-1];
471   if(y0 == 0) return;
472   var yt = y0*(1<<BI_F1)+((ys>1)?y_array[ys-2]>>BI_F2:0);
473   var d1 = BI_FV/yt, d2 = (1<<BI_F1)/yt, e = 1<<BI_F2;
474   var i = r.t, j = i-ys, t = (q==null)?nbi():q;
475   y.dlShiftTo(j,t);
476
477   var r_array = r.array;
478   if(r.compareTo(t) >= 0) {
479     r_array[r.t++] = 1;
480     r.subTo(t,r);
481   }
482   BigInteger.ONE.dlShiftTo(ys,t);
483   t.subTo(y,y); // "negative" y so we can replace sub with am later
484   while(y.t < ys) y_array[y.t++] = 0;
485   while(--j >= 0) {
486     // Estimate quotient digit
487     var qd = (r_array[--i]==y0)?BI_DM:Math.floor(r_array[i]*d1+(r_array[i-1]+e)*d2);
488     if((r_array[i]+=y.am(0,qd,r,j,0,ys)) < qd) {        // Try it out
489       y.dlShiftTo(j,t);
490       r.subTo(t,r);
491       while(r_array[i] < --qd) r.subTo(t,r);
492     }
493   }
494   if(q != null) {
495     r.drShiftTo(ys,q);
496     if(ts != ms) BigInteger.ZERO.subTo(q,q);
497   }
498   r.t = ys;
499   r.clamp();
500   if(nsh > 0) r.rShiftTo(nsh,r);        // Denormalize remainder
501   if(ts < 0) BigInteger.ZERO.subTo(r,r);
502 }
503
504 // (public) this mod a
505 function bnMod(a) {
506   var r = nbi();
507   this.abs().divRemTo(a,null,r);
508   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
509   return r;
510 }
511
512 // Modular reduction using "classic" algorithm
513 function Classic(m) { this.m = m; }
514 function cConvert(x) {
515   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
516   else return x;
517 }
518 function cRevert(x) { return x; }
519 function cReduce(x) { x.divRemTo(this.m,null,x); }
520 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
521 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
522
523 Classic.prototype.convert = cConvert;
524 Classic.prototype.revert = cRevert;
525 Classic.prototype.reduce = cReduce;
526 Classic.prototype.mulTo = cMulTo;
527 Classic.prototype.sqrTo = cSqrTo;
528
529 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
530 // justification:
531 //         xy == 1 (mod m)
532 //         xy =  1+km
533 //   xy(2-xy) = (1+km)(1-km)
534 // x[y(2-xy)] = 1-k^2m^2
535 // x[y(2-xy)] == 1 (mod m^2)
536 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
537 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
538 // JS multiply "overflows" differently from C/C++, so care is needed here.
539 function bnpInvDigit() {
540   var this_array = this.array;
541   if(this.t < 1) return 0;
542   var x = this_array[0];
543   if((x&1) == 0) return 0;
544   var y = x&3;          // y == 1/x mod 2^2
545   y = (y*(2-(x&0xf)*y))&0xf;    // y == 1/x mod 2^4
546   y = (y*(2-(x&0xff)*y))&0xff;  // y == 1/x mod 2^8
547   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;   // y == 1/x mod 2^16
548   // last step - calculate inverse mod DV directly;
549   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
550   y = (y*(2-x*y%BI_DV))%BI_DV;          // y == 1/x mod 2^dbits
551   // we really want the negative inverse, and -DV < y < DV
552   return (y>0)?BI_DV-y:-y;
553 }
554
555 // Montgomery reduction
556 function Montgomery(m) {
557   this.m = m;
558   this.mp = m.invDigit();
559   this.mpl = this.mp&0x7fff;
560   this.mph = this.mp>>15;
561   this.um = (1<<(BI_DB-15))-1;
562   this.mt2 = 2*m.t;
563 }
564
565 // xR mod m
566 function montConvert(x) {
567   var r = nbi();
568   x.abs().dlShiftTo(this.m.t,r);
569   r.divRemTo(this.m,null,r);
570   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
571   return r;
572 }
573
574 // x/R mod m
575 function montRevert(x) {
576   var r = nbi();
577   x.copyTo(r);
578   this.reduce(r);
579   return r;
580 }
581
582 // x = x/R mod m (HAC 14.32)
583 function montReduce(x) {
584   var x_array = x.array;
585   while(x.t <= this.mt2)        // pad x so am has enough room later
586     x_array[x.t++] = 0;
587   for(var i = 0; i < this.m.t; ++i) {
588     // faster way of calculating u0 = x[i]*mp mod DV
589     var j = x_array[i]&0x7fff;
590     var u0 = (j*this.mpl+(((j*this.mph+(x_array[i]>>15)*this.mpl)&this.um)<<15))&BI_DM;
591     // use am to combine the multiply-shift-add into one call
592     j = i+this.m.t;
593     x_array[j] += this.m.am(0,u0,x,i,0,this.m.t);
594     // propagate carry
595     while(x_array[j] >= BI_DV) { x_array[j] -= BI_DV; x_array[++j]++; }
596   }
597   x.clamp();
598   x.drShiftTo(this.m.t,x);
599   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
600 }
601
602 // r = "x^2/R mod m"; x != r
603 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
604
605 // r = "xy/R mod m"; x,y != r
606 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
607
608 Montgomery.prototype.convert = montConvert;
609 Montgomery.prototype.revert = montRevert;
610 Montgomery.prototype.reduce = montReduce;
611 Montgomery.prototype.mulTo = montMulTo;
612 Montgomery.prototype.sqrTo = montSqrTo;
613
614 // (protected) true iff this is even
615 function bnpIsEven() {
616   var this_array = this.array;
617   return ((this.t>0)?(this_array[0]&1):this.s) == 0;
618 }
619
620 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
621 function bnpExp(e,z) {
622   if(e > 0xffffffff || e < 1) return BigInteger.ONE;
623   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
624   g.copyTo(r);
625   while(--i >= 0) {
626     z.sqrTo(r,r2);
627     if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
628     else { var t = r; r = r2; r2 = t; }
629   }
630   return z.revert(r);
631 }
632
633 // (public) this^e % m, 0 <= e < 2^32
634 function bnModPowInt(e,m) {
635   var z;
636   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
637   return this.exp(e,z);
638 }
639
640 // protected
641 BigInteger.prototype.copyTo = bnpCopyTo;
642 BigInteger.prototype.fromInt = bnpFromInt;
643 BigInteger.prototype.fromString = bnpFromString;
644 BigInteger.prototype.clamp = bnpClamp;
645 BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
646 BigInteger.prototype.drShiftTo = bnpDRShiftTo;
647 BigInteger.prototype.lShiftTo = bnpLShiftTo;
648 BigInteger.prototype.rShiftTo = bnpRShiftTo;
649 BigInteger.prototype.subTo = bnpSubTo;
650 BigInteger.prototype.multiplyTo = bnpMultiplyTo;
651 BigInteger.prototype.squareTo = bnpSquareTo;
652 BigInteger.prototype.divRemTo = bnpDivRemTo;
653 BigInteger.prototype.invDigit = bnpInvDigit;
654 BigInteger.prototype.isEven = bnpIsEven;
655 BigInteger.prototype.exp = bnpExp;
656
657 // public
658 BigInteger.prototype.toString = bnToString;
659 BigInteger.prototype.negate = bnNegate;
660 BigInteger.prototype.abs = bnAbs;
661 BigInteger.prototype.compareTo = bnCompareTo;
662 BigInteger.prototype.bitLength = bnBitLength;
663 BigInteger.prototype.mod = bnMod;
664 BigInteger.prototype.modPowInt = bnModPowInt;
665
666 // "constants"
667 BigInteger.ZERO = nbv(0);
668 BigInteger.ONE = nbv(1);
669 // Copyright (c) 2005  Tom Wu
670 // All Rights Reserved.
671 // See "LICENSE" for details.
672
673 // Extended JavaScript BN functions, required for RSA private ops.
674
675 // (public)
676 function bnClone() { var r = nbi(); this.copyTo(r); return r; }
677
678 // (public) return value as integer
679 function bnIntValue() {
680   var this_array = this.array;
681   if(this.s < 0) {
682     if(this.t == 1) return this_array[0]-BI_DV;
683     else if(this.t == 0) return -1;
684   }
685   else if(this.t == 1) return this_array[0];
686   else if(this.t == 0) return 0;
687   // assumes 16 < DB < 32
688   return ((this_array[1]&((1<<(32-BI_DB))-1))<<BI_DB)|this_array[0];
689 }
690
691 // (public) return value as byte
692 function bnByteValue() {
693   var this_array = this.array;
694   return (this.t==0)?this.s:(this_array[0]<<24)>>24;
695 }
696
697 // (public) return value as short (assumes DB>=16)
698 function bnShortValue() {
699   var this_array = this.array;
700   return (this.t==0)?this.s:(this_array[0]<<16)>>16;
701 }
702
703 // (protected) return x s.t. r^x < DV
704 function bnpChunkSize(r) { return Math.floor(Math.LN2*BI_DB/Math.log(r)); }
705
706 // (public) 0 if this == 0, 1 if this > 0
707 function bnSigNum() {
708   var this_array = this.array;
709   if(this.s < 0) return -1;
710   else if(this.t <= 0 || (this.t == 1 && this_array[0] <= 0)) return 0;
711   else return 1;
712 }
713
714 // (protected) convert to radix string
715 function bnpToRadix(b) {
716   if(b == null) b = 10;
717   if(this.signum() == 0 || b < 2 || b > 36) return "0";
718   var cs = this.chunkSize(b);
719   var a = Math.pow(b,cs);
720   var d = nbv(a), y = nbi(), z = nbi(), r = "";
721   this.divRemTo(d,y,z);
722   while(y.signum() > 0) {
723     r = (a+z.intValue()).toString(b).substr(1) + r;
724     y.divRemTo(d,y,z);
725   }
726   return z.intValue().toString(b) + r;
727 }
728
729 // (protected) convert from radix string
730 function bnpFromRadix(s,b) {
731   this.fromInt(0);
732   if(b == null) b = 10;
733   var cs = this.chunkSize(b);
734   var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
735   for(var i = 0; i < s.length; ++i) {
736     var x = intAt(s,i);
737     if(x < 0) {
738       if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
739       continue;
740     }
741     w = b*w+x;
742     if(++j >= cs) {
743       this.dMultiply(d);
744       this.dAddOffset(w,0);
745       j = 0;
746       w = 0;
747     }
748   }
749   if(j > 0) {
750     this.dMultiply(Math.pow(b,j));
751     this.dAddOffset(w,0);
752   }
753   if(mi) BigInteger.ZERO.subTo(this,this);
754 }
755
756 // (protected) alternate constructor
757 function bnpFromNumber(a,b,c) {
758   if("number" == typeof b) {
759     // new BigInteger(int,int,RNG)
760     if(a < 2) this.fromInt(1);
761     else {
762       this.fromNumber(a,c);
763       if(!this.testBit(a-1))    // force MSB set
764         this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
765       if(this.isEven()) this.dAddOffset(1,0); // force odd
766       while(!this.isProbablePrime(b)) {
767         this.dAddOffset(2,0);
768         if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
769       }
770     }
771   }
772   else {
773     // new BigInteger(int,RNG)
774     var x = new Array(), t = a&7;
775     x.length = (a>>3)+1;
776     b.nextBytes(x);
777     if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
778     this.fromString(x,256);
779   }
780 }
781
782 // (public) convert to bigendian byte array
783 function bnToByteArray() {
784   var this_array = this.array;
785   var i = this.t, r = new Array();
786   r[0] = this.s;
787   var p = BI_DB-(i*BI_DB)%8, d, k = 0;
788   if(i-- > 0) {
789     if(p < BI_DB && (d = this_array[i]>>p) != (this.s&BI_DM)>>p)
790       r[k++] = d|(this.s<<(BI_DB-p));
791     while(i >= 0) {
792       if(p < 8) {
793         d = (this_array[i]&((1<<p)-1))<<(8-p);
794         d |= this_array[--i]>>(p+=BI_DB-8);
795       }
796       else {
797         d = (this_array[i]>>(p-=8))&0xff;
798         if(p <= 0) { p += BI_DB; --i; }
799       }
800       if((d&0x80) != 0) d |= -256;
801       if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
802       if(k > 0 || d != this.s) r[k++] = d;
803     }
804   }
805   return r;
806 }
807
808 function bnEquals(a) { return(this.compareTo(a)==0); }
809 function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
810 function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
811
812 // (protected) r = this op a (bitwise)
813 function bnpBitwiseTo(a,op,r) {
814   var this_array = this.array;
815   var a_array    = a.array;
816   var r_array    = r.array;
817   var i, f, m = Math.min(a.t,this.t);
818   for(i = 0; i < m; ++i) r_array[i] = op(this_array[i],a_array[i]);
819   if(a.t < this.t) {
820     f = a.s&BI_DM;
821     for(i = m; i < this.t; ++i) r_array[i] = op(this_array[i],f);
822     r.t = this.t;
823   }
824   else {
825     f = this.s&BI_DM;
826     for(i = m; i < a.t; ++i) r_array[i] = op(f,a_array[i]);
827     r.t = a.t;
828   }
829   r.s = op(this.s,a.s);
830   r.clamp();
831 }
832
833 // (public) this & a
834 function op_and(x,y) { return x&y; }
835 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
836
837 // (public) this | a
838 function op_or(x,y) { return x|y; }
839 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
840
841 // (public) this ^ a
842 function op_xor(x,y) { return x^y; }
843 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
844
845 // (public) this & ~a
846 function op_andnot(x,y) { return x&~y; }
847 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
848
849 // (public) ~this
850 function bnNot() {
851   var this_array = this.array;
852   var r = nbi();
853   var r_array = r.array;
854
855   for(var i = 0; i < this.t; ++i) r_array[i] = BI_DM&~this_array[i];
856   r.t = this.t;
857   r.s = ~this.s;
858   return r;
859 }
860
861 // (public) this << n
862 function bnShiftLeft(n) {
863   var r = nbi();
864   if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
865   return r;
866 }
867
868 // (public) this >> n
869 function bnShiftRight(n) {
870   var r = nbi();
871   if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
872   return r;
873 }
874
875 // return index of lowest 1-bit in x, x < 2^31
876 function lbit(x) {
877   if(x == 0) return -1;
878   var r = 0;
879   if((x&0xffff) == 0) { x >>= 16; r += 16; }
880   if((x&0xff) == 0) { x >>= 8; r += 8; }
881   if((x&0xf) == 0) { x >>= 4; r += 4; }
882   if((x&3) == 0) { x >>= 2; r += 2; }
883   if((x&1) == 0) ++r;
884   return r;
885 }
886
887 // (public) returns index of lowest 1-bit (or -1 if none)
888 function bnGetLowestSetBit() {
889   var this_array = this.array;
890   for(var i = 0; i < this.t; ++i)
891     if(this_array[i] != 0) return i*BI_DB+lbit(this_array[i]);
892   if(this.s < 0) return this.t*BI_DB;
893   return -1;
894 }
895
896 // return number of 1 bits in x
897 function cbit(x) {
898   var r = 0;
899   while(x != 0) { x &= x-1; ++r; }
900   return r;
901 }
902
903 // (public) return number of set bits
904 function bnBitCount() {
905   var r = 0, x = this.s&BI_DM;
906   for(var i = 0; i < this.t; ++i) r += cbit(this_array[i]^x);
907   return r;
908 }
909
910 // (public) true iff nth bit is set
911 function bnTestBit(n) {
912   var this_array = this.array;
913   var j = Math.floor(n/BI_DB);
914   if(j >= this.t) return(this.s!=0);
915   return((this_array[j]&(1<<(n%BI_DB)))!=0);
916 }
917
918 // (protected) this op (1<<n)
919 function bnpChangeBit(n,op) {
920   var r = BigInteger.ONE.shiftLeft(n);
921   this.bitwiseTo(r,op,r);
922   return r;
923 }
924
925 // (public) this | (1<<n)
926 function bnSetBit(n) { return this.changeBit(n,op_or); }
927
928 // (public) this & ~(1<<n)
929 function bnClearBit(n) { return this.changeBit(n,op_andnot); }
930
931 // (public) this ^ (1<<n)
932 function bnFlipBit(n) { return this.changeBit(n,op_xor); }
933
934 // (protected) r = this + a
935 function bnpAddTo(a,r) {
936   var this_array = this.array;
937   var a_array = a.array;
938   var r_array = r.array;
939   var i = 0, c = 0, m = Math.min(a.t,this.t);
940   while(i < m) {
941     c += this_array[i]+a_array[i];
942     r_array[i++] = c&BI_DM;
943     c >>= BI_DB;
944   }
945   if(a.t < this.t) {
946     c += a.s;
947     while(i < this.t) {
948       c += this_array[i];
949       r_array[i++] = c&BI_DM;
950       c >>= BI_DB;
951     }
952     c += this.s;
953   }
954   else {
955     c += this.s;
956     while(i < a.t) {
957       c += a_array[i];
958       r_array[i++] = c&BI_DM;
959       c >>= BI_DB;
960     }
961     c += a.s;
962   }
963   r.s = (c<0)?-1:0;
964   if(c > 0) r_array[i++] = c;
965   else if(c < -1) r_array[i++] = BI_DV+c;
966   r.t = i;
967   r.clamp();
968 }
969
970 // (public) this + a
971 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
972
973 // (public) this - a
974 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
975
976 // (public) this * a
977 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
978
979 // (public) this / a
980 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
981
982 // (public) this % a
983 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
984
985 // (public) [this/a,this%a]
986 function bnDivideAndRemainder(a) {
987   var q = nbi(), r = nbi();
988   this.divRemTo(a,q,r);
989   return new Array(q,r);
990 }
991
992 // (protected) this *= n, this >= 0, 1 < n < DV
993 function bnpDMultiply(n) {
994   var this_array = this.array;
995   this_array[this.t] = this.am(0,n-1,this,0,0,this.t);
996   ++this.t;
997   this.clamp();
998 }
999
1000 // (protected) this += n << w words, this >= 0
1001 function bnpDAddOffset(n,w) {
1002   var this_array = this.array;
1003   while(this.t <= w) this_array[this.t++] = 0;
1004   this_array[w] += n;
1005   while(this_array[w] >= BI_DV) {
1006     this_array[w] -= BI_DV;
1007     if(++w >= this.t) this_array[this.t++] = 0;
1008     ++this_array[w];
1009   }
1010 }
1011
1012 // A "null" reducer
1013 function NullExp() {}
1014 function nNop(x) { return x; }
1015 function nMulTo(x,y,r) { x.multiplyTo(y,r); }
1016 function nSqrTo(x,r) { x.squareTo(r); }
1017
1018 NullExp.prototype.convert = nNop;
1019 NullExp.prototype.revert = nNop;
1020 NullExp.prototype.mulTo = nMulTo;
1021 NullExp.prototype.sqrTo = nSqrTo;
1022
1023 // (public) this^e
1024 function bnPow(e) { return this.exp(e,new NullExp()); }
1025
1026 // (protected) r = lower n words of "this * a", a.t <= n
1027 // "this" should be the larger one if appropriate.
1028 function bnpMultiplyLowerTo(a,n,r) {
1029   var r_array = r.array;
1030   var a_array = a.array;
1031   var i = Math.min(this.t+a.t,n);
1032   r.s = 0; // assumes a,this >= 0
1033   r.t = i;
1034   while(i > 0) r_array[--i] = 0;
1035   var j;
1036   for(j = r.t-this.t; i < j; ++i) r_array[i+this.t] = this.am(0,a_array[i],r,i,0,this.t);
1037   for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a_array[i],r,i,0,n-i);
1038   r.clamp();
1039 }
1040
1041 // (protected) r = "this * a" without lower n words, n > 0
1042 // "this" should be the larger one if appropriate.
1043 function bnpMultiplyUpperTo(a,n,r) {
1044   var r_array = r.array;
1045   var a_array = a.array;
1046   --n;
1047   var i = r.t = this.t+a.t-n;
1048   r.s = 0; // assumes a,this >= 0
1049   while(--i >= 0) r_array[i] = 0;
1050   for(i = Math.max(n-this.t,0); i < a.t; ++i)
1051     r_array[this.t+i-n] = this.am(n-i,a_array[i],r,0,0,this.t+i-n);
1052   r.clamp();
1053   r.drShiftTo(1,r);
1054 }
1055
1056 // Barrett modular reduction
1057 function Barrett(m) {
1058   // setup Barrett
1059   this.r2 = nbi();
1060   this.q3 = nbi();
1061   BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
1062   this.mu = this.r2.divide(m);
1063   this.m = m;
1064 }
1065
1066 function barrettConvert(x) {
1067   if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
1068   else if(x.compareTo(this.m) < 0) return x;
1069   else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
1070 }
1071
1072 function barrettRevert(x) { return x; }
1073
1074 // x = x mod m (HAC 14.42)
1075 function barrettReduce(x) {
1076   x.drShiftTo(this.m.t-1,this.r2);
1077   if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
1078   this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
1079   this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
1080   while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
1081   x.subTo(this.r2,x);
1082   while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
1083 }
1084
1085 // r = x^2 mod m; x != r
1086 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
1087
1088 // r = x*y mod m; x,y != r
1089 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
1090
1091 Barrett.prototype.convert = barrettConvert;
1092 Barrett.prototype.revert = barrettRevert;
1093 Barrett.prototype.reduce = barrettReduce;
1094 Barrett.prototype.mulTo = barrettMulTo;
1095 Barrett.prototype.sqrTo = barrettSqrTo;
1096
1097 // (public) this^e % m (HAC 14.85)
1098 function bnModPow(e,m) {
1099   var e_array = e.array;
1100   var i = e.bitLength(), k, r = nbv(1), z;
1101   if(i <= 0) return r;
1102   else if(i < 18) k = 1;
1103   else if(i < 48) k = 3;
1104   else if(i < 144) k = 4;
1105   else if(i < 768) k = 5;
1106   else k = 6;
1107   if(i < 8)
1108     z = new Classic(m);
1109   else if(m.isEven())
1110     z = new Barrett(m);
1111   else
1112     z = new Montgomery(m);
1113
1114   // precomputation
1115   var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
1116   g[1] = z.convert(this);
1117   if(k > 1) {
1118     var g2 = nbi();
1119     z.sqrTo(g[1],g2);
1120     while(n <= km) {
1121       g[n] = nbi();
1122       z.mulTo(g2,g[n-2],g[n]);
1123       n += 2;
1124     }
1125   }
1126
1127   var j = e.t-1, w, is1 = true, r2 = nbi(), t;
1128   i = nbits(e_array[j])-1;
1129   while(j >= 0) {
1130     if(i >= k1) w = (e_array[j]>>(i-k1))&km;
1131     else {
1132       w = (e_array[j]&((1<<(i+1))-1))<<(k1-i);
1133       if(j > 0) w |= e_array[j-1]>>(BI_DB+i-k1);
1134     }
1135
1136     n = k;
1137     while((w&1) == 0) { w >>= 1; --n; }
1138     if((i -= n) < 0) { i += BI_DB; --j; }
1139     if(is1) {   // ret == 1, don't bother squaring or multiplying it
1140       g[w].copyTo(r);
1141       is1 = false;
1142     }
1143     else {
1144       while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
1145       if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
1146       z.mulTo(r2,g[w],r);
1147     }
1148
1149     while(j >= 0 && (e_array[j]&(1<<i)) == 0) {
1150       z.sqrTo(r,r2); t = r; r = r2; r2 = t;
1151       if(--i < 0) { i = BI_DB-1; --j; }
1152     }
1153   }
1154   return z.revert(r);
1155 }
1156
1157 // (public) gcd(this,a) (HAC 14.54)
1158 function bnGCD(a) {
1159   var x = (this.s<0)?this.negate():this.clone();
1160   var y = (a.s<0)?a.negate():a.clone();
1161   if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
1162   var i = x.getLowestSetBit(), g = y.getLowestSetBit();
1163   if(g < 0) return x;
1164   if(i < g) g = i;
1165   if(g > 0) {
1166     x.rShiftTo(g,x);
1167     y.rShiftTo(g,y);
1168   }
1169   while(x.signum() > 0) {
1170     if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
1171     if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
1172     if(x.compareTo(y) >= 0) {
1173       x.subTo(y,x);
1174       x.rShiftTo(1,x);
1175     }
1176     else {
1177       y.subTo(x,y);
1178       y.rShiftTo(1,y);
1179     }
1180   }
1181   if(g > 0) y.lShiftTo(g,y);
1182   return y;
1183 }
1184
1185 // (protected) this % n, n < 2^26
1186 function bnpModInt(n) {
1187   var this_array = this.array;
1188   if(n <= 0) return 0;
1189   var d = BI_DV%n, r = (this.s<0)?n-1:0;
1190   if(this.t > 0)
1191     if(d == 0) r = this_array[0]%n;
1192     else for(var i = this.t-1; i >= 0; --i) r = (d*r+this_array[i])%n;
1193   return r;
1194 }
1195
1196 // (public) 1/this % m (HAC 14.61)
1197 function bnModInverse(m) {
1198   var ac = m.isEven();
1199   if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
1200   var u = m.clone(), v = this.clone();
1201   var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
1202   while(u.signum() != 0) {
1203     while(u.isEven()) {
1204       u.rShiftTo(1,u);
1205       if(ac) {
1206         if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
1207         a.rShiftTo(1,a);
1208       }
1209       else if(!b.isEven()) b.subTo(m,b);
1210       b.rShiftTo(1,b);
1211     }
1212     while(v.isEven()) {
1213       v.rShiftTo(1,v);
1214       if(ac) {
1215         if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
1216         c.rShiftTo(1,c);
1217       }
1218       else if(!d.isEven()) d.subTo(m,d);
1219       d.rShiftTo(1,d);
1220     }
1221     if(u.compareTo(v) >= 0) {
1222       u.subTo(v,u);
1223       if(ac) a.subTo(c,a);
1224       b.subTo(d,b);
1225     }
1226     else {
1227       v.subTo(u,v);
1228       if(ac) c.subTo(a,c);
1229       d.subTo(b,d);
1230     }
1231   }
1232   if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
1233   if(d.compareTo(m) >= 0) return d.subtract(m);
1234   if(d.signum() < 0) d.addTo(m,d); else return d;
1235   if(d.signum() < 0) return d.add(m); else return d;
1236 }
1237
1238 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
1239 var lplim = (1<<26)/lowprimes[lowprimes.length-1];
1240
1241 // (public) test primality with certainty >= 1-.5^t
1242 function bnIsProbablePrime(t) {
1243   var i, x = this.abs();
1244   var x_array = x.array;
1245   if(x.t == 1 && x_array[0] <= lowprimes[lowprimes.length-1]) {
1246     for(i = 0; i < lowprimes.length; ++i)
1247       if(x_array[0] == lowprimes[i]) return true;
1248     return false;
1249   }
1250   if(x.isEven()) return false;
1251   i = 1;
1252   while(i < lowprimes.length) {
1253     var m = lowprimes[i], j = i+1;
1254     while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
1255     m = x.modInt(m);
1256     while(i < j) if(m%lowprimes[i++] == 0) return false;
1257   }
1258   return x.millerRabin(t);
1259 }
1260
1261 // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
1262 function bnpMillerRabin(t) {
1263   var n1 = this.subtract(BigInteger.ONE);
1264   var k = n1.getLowestSetBit();
1265   if(k <= 0) return false;
1266   var r = n1.shiftRight(k);
1267   t = (t+1)>>1;
1268   if(t > lowprimes.length) t = lowprimes.length;
1269   var a = nbi();
1270   for(var i = 0; i < t; ++i) {
1271     a.fromInt(lowprimes[i]);
1272     var y = a.modPow(r,this);
1273     if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
1274       var j = 1;
1275       while(j++ < k && y.compareTo(n1) != 0) {
1276         y = y.modPowInt(2,this);
1277         if(y.compareTo(BigInteger.ONE) == 0) return false;
1278       }
1279       if(y.compareTo(n1) != 0) return false;
1280     }
1281   }
1282   return true;
1283 }
1284
1285 // protected
1286 BigInteger.prototype.chunkSize = bnpChunkSize;
1287 BigInteger.prototype.toRadix = bnpToRadix;
1288 BigInteger.prototype.fromRadix = bnpFromRadix;
1289 BigInteger.prototype.fromNumber = bnpFromNumber;
1290 BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
1291 BigInteger.prototype.changeBit = bnpChangeBit;
1292 BigInteger.prototype.addTo = bnpAddTo;
1293 BigInteger.prototype.dMultiply = bnpDMultiply;
1294 BigInteger.prototype.dAddOffset = bnpDAddOffset;
1295 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
1296 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
1297 BigInteger.prototype.modInt = bnpModInt;
1298 BigInteger.prototype.millerRabin = bnpMillerRabin;
1299
1300 // public
1301 BigInteger.prototype.clone = bnClone;
1302 BigInteger.prototype.intValue = bnIntValue;
1303 BigInteger.prototype.byteValue = bnByteValue;
1304 BigInteger.prototype.shortValue = bnShortValue;
1305 BigInteger.prototype.signum = bnSigNum;
1306 BigInteger.prototype.toByteArray = bnToByteArray;
1307 BigInteger.prototype.equals = bnEquals;
1308 BigInteger.prototype.min = bnMin;
1309 BigInteger.prototype.max = bnMax;
1310 BigInteger.prototype.and = bnAnd;
1311 BigInteger.prototype.or = bnOr;
1312 BigInteger.prototype.xor = bnXor;
1313 BigInteger.prototype.andNot = bnAndNot;
1314 BigInteger.prototype.not = bnNot;
1315 BigInteger.prototype.shiftLeft = bnShiftLeft;
1316 BigInteger.prototype.shiftRight = bnShiftRight;
1317 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
1318 BigInteger.prototype.bitCount = bnBitCount;
1319 BigInteger.prototype.testBit = bnTestBit;
1320 BigInteger.prototype.setBit = bnSetBit;
1321 BigInteger.prototype.clearBit = bnClearBit;
1322 BigInteger.prototype.flipBit = bnFlipBit;
1323 BigInteger.prototype.add = bnAdd;
1324 BigInteger.prototype.subtract = bnSubtract;
1325 BigInteger.prototype.multiply = bnMultiply;
1326 BigInteger.prototype.divide = bnDivide;
1327 BigInteger.prototype.remainder = bnRemainder;
1328 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
1329 BigInteger.prototype.modPow = bnModPow;
1330 BigInteger.prototype.modInverse = bnModInverse;
1331 BigInteger.prototype.pow = bnPow;
1332 BigInteger.prototype.gcd = bnGCD;
1333 BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
1334
1335 // BigInteger interfaces not implemented in jsbn:
1336
1337 // BigInteger(int signum, byte[] magnitude)
1338 // double doubleValue()
1339 // float floatValue()
1340 // int hashCode()
1341 // long longValue()
1342 // static BigInteger valueOf(long val)
1343 // prng4.js - uses Arcfour as a PRNG
1344
1345 function Arcfour() {
1346   this.i = 0;
1347   this.j = 0;
1348   this.S = new Array();
1349 }
1350
1351 // Initialize arcfour context from key, an array of ints, each from [0..255]
1352 function ARC4init(key) {
1353   var i, j, t;
1354   for(i = 0; i < 256; ++i)
1355     this.S[i] = i;
1356   j = 0;
1357   for(i = 0; i < 256; ++i) {
1358     j = (j + this.S[i] + key[i % key.length]) & 255;
1359     t = this.S[i];
1360     this.S[i] = this.S[j];
1361     this.S[j] = t;
1362   }
1363   this.i = 0;
1364   this.j = 0;
1365 }
1366
1367 function ARC4next() {
1368   var t;
1369   this.i = (this.i + 1) & 255;
1370   this.j = (this.j + this.S[this.i]) & 255;
1371   t = this.S[this.i];
1372   this.S[this.i] = this.S[this.j];
1373   this.S[this.j] = t;
1374   return this.S[(t + this.S[this.i]) & 255];
1375 }
1376
1377 Arcfour.prototype.init = ARC4init;
1378 Arcfour.prototype.next = ARC4next;
1379
1380 // Plug in your RNG constructor here
1381 function prng_newstate() {
1382   return new Arcfour();
1383 }
1384
1385 // Pool size must be a multiple of 4 and greater than 32.
1386 // An array of bytes the size of the pool will be passed to init()
1387 var rng_psize = 256;
1388 // Random number generator - requires a PRNG backend, e.g. prng4.js
1389
1390 // For best results, put code like
1391 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
1392 // in your main HTML document.
1393
1394 var rng_state;
1395 var rng_pool;
1396 var rng_pptr;
1397
1398 // Mix in a 32-bit integer into the pool
1399 function rng_seed_int(x) {
1400   rng_pool[rng_pptr++] ^= x & 255;
1401   rng_pool[rng_pptr++] ^= (x >> 8) & 255;
1402   rng_pool[rng_pptr++] ^= (x >> 16) & 255;
1403   rng_pool[rng_pptr++] ^= (x >> 24) & 255;
1404   if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
1405 }
1406
1407 // Mix in the current time (w/milliseconds) into the pool
1408 function rng_seed_time() {
1409   // Use pre-computed date to avoid making the benchmark
1410   // results dependent on the current date.
1411   rng_seed_int(1122926989487);
1412 }
1413
1414 // Initialize the pool with junk if needed.
1415 if(rng_pool == null) {
1416   rng_pool = new Array();
1417   rng_pptr = 0;
1418   var t;
1419   while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()
1420     t = Math.floor(65536 * Math.random());
1421     rng_pool[rng_pptr++] = t >>> 8;
1422     rng_pool[rng_pptr++] = t & 255;
1423   }
1424   rng_pptr = 0;
1425   rng_seed_time();
1426   //rng_seed_int(window.screenX);
1427   //rng_seed_int(window.screenY);
1428 }
1429
1430 function rng_get_byte() {
1431   if(rng_state == null) {
1432     rng_seed_time();
1433     rng_state = prng_newstate();
1434     rng_state.init(rng_pool);
1435     for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
1436       rng_pool[rng_pptr] = 0;
1437     rng_pptr = 0;
1438     //rng_pool = null;
1439   }
1440   // TODO: allow reseeding after first request
1441   return rng_state.next();
1442 }
1443
1444 function rng_get_bytes(ba) {
1445   var i;
1446   for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
1447 }
1448
1449 function SecureRandom() {}
1450
1451 SecureRandom.prototype.nextBytes = rng_get_bytes;
1452 // Depends on jsbn.js and rng.js
1453
1454 // convert a (hex) string to a bignum object
1455 function parseBigInt(str,r) {
1456   return new BigInteger(str,r);
1457 }
1458
1459 function linebrk(s,n) {
1460   var ret = "";
1461   var i = 0;
1462   while(i + n < s.length) {
1463     ret += s.substring(i,i+n) + "\n";
1464     i += n;
1465   }
1466   return ret + s.substring(i,s.length);
1467 }
1468
1469 function byte2Hex(b) {
1470   if(b < 0x10)
1471     return "0" + b.toString(16);
1472   else
1473     return b.toString(16);
1474 }
1475
1476 // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
1477 function pkcs1pad2(s,n) {
1478   if(n < s.length + 11) {
1479     alert("Message too long for RSA");
1480     return null;
1481   }
1482   var ba = new Array();
1483   var i = s.length - 1;
1484   while(i >= 0 && n > 0) ba[--n] = s.charCodeAt(i--);
1485   ba[--n] = 0;
1486   var rng = new SecureRandom();
1487   var x = new Array();
1488   while(n > 2) { // random non-zero pad
1489     x[0] = 0;
1490     while(x[0] == 0) rng.nextBytes(x);
1491     ba[--n] = x[0];
1492   }
1493   ba[--n] = 2;
1494   ba[--n] = 0;
1495   return new BigInteger(ba);
1496 }
1497
1498 // "empty" RSA key constructor
1499 function RSAKey() {
1500   this.n = null;
1501   this.e = 0;
1502   this.d = null;
1503   this.p = null;
1504   this.q = null;
1505   this.dmp1 = null;
1506   this.dmq1 = null;
1507   this.coeff = null;
1508 }
1509
1510 // Set the public key fields N and e from hex strings
1511 function RSASetPublic(N,E) {
1512   if(N != null && E != null && N.length > 0 && E.length > 0) {
1513     this.n = parseBigInt(N,16);
1514     this.e = parseInt(E,16);
1515   }
1516   else
1517     alert("Invalid RSA public key");
1518 }
1519
1520 // Perform raw public operation on "x": return x^e (mod n)
1521 function RSADoPublic(x) {
1522   return x.modPowInt(this.e, this.n);
1523 }
1524
1525 // Return the PKCS#1 RSA encryption of "text" as an even-length hex string
1526 function RSAEncrypt(text) {
1527   var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3);
1528   if(m == null) return null;
1529   var c = this.doPublic(m);
1530   if(c == null) return null;
1531   var h = c.toString(16);
1532   if((h.length & 1) == 0) return h; else return "0" + h;
1533 }
1534
1535 // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
1536 //function RSAEncryptB64(text) {
1537 //  var h = this.encrypt(text);
1538 //  if(h) return hex2b64(h); else return null;
1539 //}
1540
1541 // protected
1542 RSAKey.prototype.doPublic = RSADoPublic;
1543
1544 // public
1545 RSAKey.prototype.setPublic = RSASetPublic;
1546 RSAKey.prototype.encrypt = RSAEncrypt;
1547 //RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
1548 // Depends on rsa.js and jsbn2.js
1549
1550 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
1551 function pkcs1unpad2(d,n) {
1552   var b = d.toByteArray();
1553   var i = 0;
1554   while(i < b.length && b[i] == 0) ++i;
1555   if(b.length-i != n-1 || b[i] != 2)
1556     return null;
1557   ++i;
1558   while(b[i] != 0)
1559     if(++i >= b.length) return null;
1560   var ret = "";
1561   while(++i < b.length)
1562     ret += String.fromCharCode(b[i]);
1563   return ret;
1564 }
1565
1566 // Set the private key fields N, e, and d from hex strings
1567 function RSASetPrivate(N,E,D) {
1568   if(N != null && E != null && N.length > 0 && E.length > 0) {
1569     this.n = parseBigInt(N,16);
1570     this.e = parseInt(E,16);
1571     this.d = parseBigInt(D,16);
1572   }
1573   else
1574     alert("Invalid RSA private key");
1575 }
1576
1577 // Set the private key fields N, e, d and CRT params from hex strings
1578 function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) {
1579   if(N != null && E != null && N.length > 0 && E.length > 0) {
1580     this.n = parseBigInt(N,16);
1581     this.e = parseInt(E,16);
1582     this.d = parseBigInt(D,16);
1583     this.p = parseBigInt(P,16);
1584     this.q = parseBigInt(Q,16);
1585     this.dmp1 = parseBigInt(DP,16);
1586     this.dmq1 = parseBigInt(DQ,16);
1587     this.coeff = parseBigInt(C,16);
1588   }
1589   else
1590     alert("Invalid RSA private key");
1591 }
1592
1593 // Generate a new random private key B bits long, using public expt E
1594 function RSAGenerate(B,E) {
1595   var rng = new SecureRandom();
1596   var qs = B>>1;
1597   this.e = parseInt(E,16);
1598   var ee = new BigInteger(E,16);
1599   for(;;) {
1600     for(;;) {
1601       this.p = new BigInteger(B-qs,1,rng);
1602       if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break;
1603     }
1604     for(;;) {
1605       this.q = new BigInteger(qs,1,rng);
1606       if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break;
1607     }
1608     if(this.p.compareTo(this.q) <= 0) {
1609       var t = this.p;
1610       this.p = this.q;
1611       this.q = t;
1612     }
1613     var p1 = this.p.subtract(BigInteger.ONE);
1614     var q1 = this.q.subtract(BigInteger.ONE);
1615     var phi = p1.multiply(q1);
1616     if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
1617       this.n = this.p.multiply(this.q);
1618       this.d = ee.modInverse(phi);
1619       this.dmp1 = this.d.mod(p1);
1620       this.dmq1 = this.d.mod(q1);
1621       this.coeff = this.q.modInverse(this.p);
1622       break;
1623     }
1624   }
1625 }
1626
1627 // Perform raw private operation on "x": return x^d (mod n)
1628 function RSADoPrivate(x) {
1629   if(this.p == null || this.q == null)
1630     return x.modPow(this.d, this.n);
1631
1632   // TODO: re-calculate any missing CRT params
1633   var xp = x.mod(this.p).modPow(this.dmp1, this.p);
1634   var xq = x.mod(this.q).modPow(this.dmq1, this.q);
1635
1636   while(xp.compareTo(xq) < 0)
1637     xp = xp.add(this.p);
1638   return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq);
1639 }
1640
1641 // Return the PKCS#1 RSA decryption of "ctext".
1642 // "ctext" is an even-length hex string and the output is a plain string.
1643 function RSADecrypt(ctext) {
1644   var c = parseBigInt(ctext, 16);
1645   var m = this.doPrivate(c);
1646   if(m == null) return null;
1647   return pkcs1unpad2(m, (this.n.bitLength()+7)>>3);
1648 }
1649
1650 // Return the PKCS#1 RSA decryption of "ctext".
1651 // "ctext" is a Base64-encoded string and the output is a plain string.
1652 //function RSAB64Decrypt(ctext) {
1653 //  var h = b64tohex(ctext);
1654 //  if(h) return this.decrypt(h); else return null;
1655 //}
1656
1657 // protected
1658 RSAKey.prototype.doPrivate = RSADoPrivate;
1659
1660 // public
1661 RSAKey.prototype.setPrivate = RSASetPrivate;
1662 RSAKey.prototype.setPrivateEx = RSASetPrivateEx;
1663 RSAKey.prototype.generate = RSAGenerate;
1664 RSAKey.prototype.decrypt = RSADecrypt;
1665 //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
1666
1667
1668 nValue="a5261939975948bb7a58dffe5ff54e65f0498f9175f5a09288810b8975871e99af3b5dd94057b0fc07535f5f97444504fa35169d461d0d30cf0192e307727c065168c788771c561a9400fb49175e9e6aa4e23fe11af69e9412dd23b0cb6684c4c2429bce139e848ab26d0829073351f4acd36074eafd036a5eb83359d2a698d3";
1669 eValue="10001";
1670 dValue="8e9912f6d3645894e8d38cb58c0db81ff516cf4c7e5a14c7f1eddb1459d2cded4d8d293fc97aee6aefb861859c8b6a3d1dfe710463e1f9ddc72048c09751971c4a580aa51eb523357a3cc48d31cfad1d4a165066ed92d4748fb6571211da5cb14bc11b6e2df7c1a559e6d5ac1cd5c94703a22891464fba23d0d965086277a161";
1671 pValue="d090ce58a92c75233a6486cb0a9209bf3583b64f540c76f5294bb97d285eed33aec220bde14b2417951178ac152ceab6da7090905b478195498b352048f15e7d";
1672 qValue="cab575dc652bb66df15a0359609d51d1db184750c00c6698b90ef3465c99655103edbf0d54c56aec0ce3c4d22592338092a126a0cc49f65a4a30d222b411e58f";
1673 dmp1Value="1a24bca8e273df2f0e47c199bbf678604e7df7215480c77c8db39f49b000ce2cf7500038acfff5433b7d582a01f1826e6f4d42e1c57f5e1fef7b12aabc59fd25";
1674 dmq1Value="3d06982efbbe47339e1f6d36b1216b8a741d410b0c662f54f7118b27b9a4ec9d914337eb39841d8666f3034408cf94f5b62f11c402fc994fe15a05493150d9fd";
1675 coeffValue="3a3e731acd8960b7ff9eb81a7ff93bd1cfa74cbd56987db58b4594fb09c09084db1734c8143f98b602b981aaa9243ca28deb69b5b280ee8dcee0fd2625e53250";
1676
1677 setupEngine(am3, 28);
1678
1679 var TEXT = "The quick brown fox jumped over the extremely lazy frog! " +
1680     "Now is the time for all good men to come to the party.";
1681 var encrypted;
1682
1683 function encrypt() {
1684   var RSA = new RSAKey();
1685   RSA.setPublic(nValue, eValue);
1686   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
1687   encrypted = RSA.encrypt(TEXT);
1688 }
1689
1690 function decrypt() {
1691   var RSA = new RSAKey();
1692   RSA.setPublic(nValue, eValue);
1693   RSA.setPrivateEx(nValue, eValue, dValue, pValue, qValue, dmp1Value, dmq1Value, coeffValue);
1694   var decrypted = RSA.decrypt(encrypted);
1695   if (decrypted != TEXT) {
1696     throw new Error("Crypto operation failed");
1697   }
1698 }