+ if (isEmpty())
+ return;
+
+ cairo_t* cr = platformPath()->m_cr;
+
+ double x0, y0;
+ cairo_get_current_point(cr, &x0, &y0);
+ FloatPoint p0(x0, y0);
+ if ((p1.x() == p0.x() && p1.y() == p0.y()) || (p1.x() == p2.x() && p1.y() == p2.y()) || radius == 0.f) {
+ cairo_line_to(cr, p1.x(), p1.y());
+ return;
+ }
+
+ FloatPoint p1p0((p0.x() - p1.x()),(p0.y() - p1.y()));
+ FloatPoint p1p2((p2.x() - p1.x()),(p2.y() - p1.y()));
+ float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y());
+ float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y());
+
+ double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
+ // all points on a line logic
+ if (cos_phi == -1) {
+ cairo_line_to(cr, p1.x(), p1.y());
+ return;
+ }
+ if (cos_phi == 1) {
+ // add infinite far away point
+ unsigned int max_length = 65535;
+ double factor_max = max_length / p1p0_length;
+ FloatPoint ep((p0.x() + factor_max * p1p0.x()), (p0.y() + factor_max * p1p0.y()));
+ cairo_line_to(cr, ep.x(), ep.y());
+ return;
+ }
+
+ float tangent = radius / tan(acos(cos_phi) / 2);
+ float factor_p1p0 = tangent / p1p0_length;
+ FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
+
+ FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
+ float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y());
+ float factor_ra = radius / orth_p1p0_length;
+
+ // angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
+ double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
+ if (cos_alpha < 0.f)
+ orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
+
+ FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
+
+ // calculate angles for addArc
+ orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
+ float sa = acos(orth_p1p0.x() / orth_p1p0_length);
+ if (orth_p1p0.y() < 0.f)
+ sa = 2 * piDouble - sa;
+
+ // anticlockwise logic
+ bool anticlockwise = false;
+
+ float factor_p1p2 = tangent / p1p2_length;
+ FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
+ FloatPoint orth_p1p2((t_p1p2.x() - p.x()),(t_p1p2.y() - p.y()));
+ float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
+ float ea = acos(orth_p1p2.x() / orth_p1p2_length);
+ if (orth_p1p2.y() < 0)
+ ea = 2 * piDouble - ea;
+ if ((sa > ea) && ((sa - ea) < piDouble))
+ anticlockwise = true;
+ if ((sa < ea) && ((ea - sa) > piDouble))
+ anticlockwise = true;
+
+ cairo_line_to(cr, t_p1p0.x(), t_p1p0.y());
+
+ addArc(p, radius, sa, ea, anticlockwise);