/* * Copyright (C) 2016 Igalia S.L. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "ScrollAnimationKinetic.h" #include "ScrollableArea.h" /* * PerAxisData is a port of GtkKineticScrolling as of GTK+ 3.20, * mimicking its API and its behavior. * * All our curves are second degree linear differential equations, and * so they can always be written as linear combinations of 2 base * solutions. coef1 and coef2 are the coefficients to these two base * solutions, and are computed from the initial position and velocity. * * In the case of simple deceleration, the differential equation is * * y'' = -my' * * With m the resistence factor. For this we use the following 2 * base solutions: * * f1(x) = 1 * f2(x) = exp(-mx) * * In the case of overshoot, the differential equation is * * y'' = -my' - ky * * With m the resistance, and k the spring stiffness constant. We let * k = m^2 / 4, so that the system is critically damped (ie, returns to its * equilibrium position as quickly as possible, without oscillating), and offset * the whole thing, such that the equilibrium position is at 0. This gives the * base solutions * * f1(x) = exp(-mx / 2) * f2(x) = t exp(-mx / 2) */ static const double decelFriction = 4; static const double frameRate = 60; static const Seconds tickTime = 1_s / frameRate; static const Seconds minimumTimerInterval { 1_ms }; namespace WebCore { ScrollAnimationKinetic::PerAxisData::PerAxisData(double lower, double upper, double initialPosition, double initialVelocity) : m_lower(lower) , m_upper(upper) , m_coef1(initialVelocity / decelFriction + initialPosition) , m_coef2(-initialVelocity / decelFriction) , m_position(clampTo(initialPosition, lower, upper)) , m_velocity(initialPosition < lower || initialPosition > upper ? 0 : initialVelocity) { } bool ScrollAnimationKinetic::PerAxisData::animateScroll(Seconds timeDelta) { auto lastPosition = m_position; auto lastTime = m_elapsedTime; m_elapsedTime += timeDelta; double exponentialPart = exp(-decelFriction * m_elapsedTime.value()); m_position = m_coef1 + m_coef2 * exponentialPart; m_velocity = -decelFriction * m_coef2 * exponentialPart; if (m_position < m_lower) { m_velocity = m_lower - m_position; m_position = m_lower; } else if (m_position > m_upper) { m_velocity = m_upper - m_position; m_position = m_upper; } if (fabs(m_velocity) < 1 || (lastTime && fabs(m_position - lastPosition) < 1)) { m_position = round(m_position); m_velocity = 0; } return m_velocity; } ScrollAnimationKinetic::ScrollAnimationKinetic(ScrollableArea& scrollableArea, std::function&& notifyPositionChangedFunction) : ScrollAnimation(scrollableArea) , m_notifyPositionChangedFunction(WTFMove(notifyPositionChangedFunction)) , m_animationTimer(*this, &ScrollAnimationKinetic::animationTimerFired) { } ScrollAnimationKinetic::~ScrollAnimationKinetic() = default; void ScrollAnimationKinetic::stop() { m_animationTimer.stop(); m_horizontalData = WTF::nullopt; m_verticalData = WTF::nullopt; } void ScrollAnimationKinetic::start(const FloatPoint& initialPosition, const FloatPoint& velocity, bool mayHScroll, bool mayVScroll) { stop(); m_position = initialPosition; if (!velocity.x() && !velocity.y()) return; if (mayHScroll) { m_horizontalData = PerAxisData(m_scrollableArea.minimumScrollPosition().x(), m_scrollableArea.maximumScrollPosition().x(), initialPosition.x(), velocity.x()); } if (mayVScroll) { m_verticalData = PerAxisData(m_scrollableArea.minimumScrollPosition().y(), m_scrollableArea.maximumScrollPosition().y(), initialPosition.y(), velocity.y()); } m_startTime = MonotonicTime::now() - tickTime / 2.; animationTimerFired(); } void ScrollAnimationKinetic::animationTimerFired() { MonotonicTime currentTime = MonotonicTime::now(); Seconds deltaToNextFrame = 1_s * ceil((currentTime - m_startTime).value() * frameRate) / frameRate - (currentTime - m_startTime); if (m_horizontalData && !m_horizontalData.value().animateScroll(deltaToNextFrame)) m_horizontalData = WTF::nullopt; if (m_verticalData && !m_verticalData.value().animateScroll(deltaToNextFrame)) m_verticalData = WTF::nullopt; // If one of the axes didn't finish its animation we must continue it. if (m_horizontalData || m_verticalData) m_animationTimer.startOneShot(std::max(minimumTimerInterval, deltaToNextFrame)); double x = m_horizontalData ? m_horizontalData.value().position() : m_position.x(); double y = m_verticalData ? m_verticalData.value().position() : m_position.y(); m_position = FloatPoint(x, y); m_notifyPositionChangedFunction(FloatPoint(m_position)); } } // namespace WebCore