53f3fa845b4398114cd3815e21e635e266f91135
[WebKit-https.git] / Source / ThirdParty / ANGLE / src / compiler / ParseHelper.cpp
1 //
2 // Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6
7 #include "compiler/ParseHelper.h"
8
9 #include <stdarg.h>
10 #include <stdio.h>
11
12 #include "compiler/glslang.h"
13 #include "compiler/osinclude.h"
14 #include "compiler/InitializeParseContext.h"
15
16 extern "C" {
17 extern int InitPreprocessor();
18 extern int FinalizePreprocessor();
19 extern void PredefineIntMacro(const char *name, int value);
20 }
21
22 static void ReportInfo(TInfoSinkBase& sink,
23                        TPrefixType type, TSourceLoc loc,
24                        const char* reason, const char* token, 
25                        const char* extraInfo)
26 {
27     /* VC++ format: file(linenum) : error #: 'token' : extrainfo */
28     sink.prefix(type);
29     sink.location(loc);
30     sink << "'" << token <<  "' : " << reason << " " << extraInfo << "\n";
31 }
32
33 static void DefineExtensionMacros(const TExtensionBehavior& extBehavior)
34 {
35     for (TExtensionBehavior::const_iterator iter = extBehavior.begin();
36          iter != extBehavior.end(); ++iter) {
37         PredefineIntMacro(iter->first.c_str(), 1);
38     }
39 }
40
41 ///////////////////////////////////////////////////////////////////////
42 //
43 // Sub- vector and matrix fields
44 //
45 ////////////////////////////////////////////////////////////////////////
46
47 //
48 // Look at a '.' field selector string and change it into offsets
49 // for a vector.
50 //
51 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, int line)
52 {
53     fields.num = (int) compString.size();
54     if (fields.num > 4) {
55         error(line, "illegal vector field selection", compString.c_str(), "");
56         return false;
57     }
58
59     enum {
60         exyzw,
61         ergba,
62         estpq,
63     } fieldSet[4];
64
65     for (int i = 0; i < fields.num; ++i) {
66         switch (compString[i])  {
67         case 'x': 
68             fields.offsets[i] = 0;
69             fieldSet[i] = exyzw;
70             break;
71         case 'r': 
72             fields.offsets[i] = 0;
73             fieldSet[i] = ergba;
74             break;
75         case 's':
76             fields.offsets[i] = 0;
77             fieldSet[i] = estpq;
78             break;
79         case 'y': 
80             fields.offsets[i] = 1;
81             fieldSet[i] = exyzw;
82             break;
83         case 'g': 
84             fields.offsets[i] = 1;
85             fieldSet[i] = ergba;
86             break;
87         case 't':
88             fields.offsets[i] = 1;
89             fieldSet[i] = estpq;
90             break;
91         case 'z': 
92             fields.offsets[i] = 2;
93             fieldSet[i] = exyzw;
94             break;
95         case 'b': 
96             fields.offsets[i] = 2;
97             fieldSet[i] = ergba;
98             break;
99         case 'p':
100             fields.offsets[i] = 2;
101             fieldSet[i] = estpq;
102             break;
103         
104         case 'w': 
105             fields.offsets[i] = 3;
106             fieldSet[i] = exyzw;
107             break;
108         case 'a': 
109             fields.offsets[i] = 3;
110             fieldSet[i] = ergba;
111             break;
112         case 'q':
113             fields.offsets[i] = 3;
114             fieldSet[i] = estpq;
115             break;
116         default:
117             error(line, "illegal vector field selection", compString.c_str(), "");
118             return false;
119         }
120     }
121
122     for (int i = 0; i < fields.num; ++i) {
123         if (fields.offsets[i] >= vecSize) {
124             error(line, "vector field selection out of range",  compString.c_str(), "");
125             return false;
126         }
127
128         if (i > 0) {
129             if (fieldSet[i] != fieldSet[i-1]) {
130                 error(line, "illegal - vector component fields not from the same set", compString.c_str(), "");
131                 return false;
132             }
133         }
134     }
135
136     return true;
137 }
138
139
140 //
141 // Look at a '.' field selector string and change it into offsets
142 // for a matrix.
143 //
144 bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, int line)
145 {
146     fields.wholeRow = false;
147     fields.wholeCol = false;
148     fields.row = -1;
149     fields.col = -1;
150
151     if (compString.size() != 2) {
152         error(line, "illegal length of matrix field selection", compString.c_str(), "");
153         return false;
154     }
155
156     if (compString[0] == '_') {
157         if (compString[1] < '0' || compString[1] > '3') {
158             error(line, "illegal matrix field selection", compString.c_str(), "");
159             return false;
160         }
161         fields.wholeCol = true;
162         fields.col = compString[1] - '0';
163     } else if (compString[1] == '_') {
164         if (compString[0] < '0' || compString[0] > '3') {
165             error(line, "illegal matrix field selection", compString.c_str(), "");
166             return false;
167         }
168         fields.wholeRow = true;
169         fields.row = compString[0] - '0';
170     } else {
171         if (compString[0] < '0' || compString[0] > '3' ||
172             compString[1] < '0' || compString[1] > '3') {
173             error(line, "illegal matrix field selection", compString.c_str(), "");
174             return false;
175         }
176         fields.row = compString[0] - '0';
177         fields.col = compString[1] - '0';
178     }
179
180     if (fields.row >= matSize || fields.col >= matSize) {
181         error(line, "matrix field selection out of range", compString.c_str(), "");
182         return false;
183     }
184
185     return true;
186 }
187
188 ///////////////////////////////////////////////////////////////////////
189 //
190 // Errors
191 //
192 ////////////////////////////////////////////////////////////////////////
193
194 //
195 // Track whether errors have occurred.
196 //
197 void TParseContext::recover()
198 {
199     recoveredFromError = true;
200 }
201
202 //
203 // Used by flex/bison to output all syntax and parsing errors.
204 //
205 void TParseContext::error(TSourceLoc loc,
206                           const char* reason, const char* token, 
207                           const char* extraInfoFormat, ...)
208 {
209     char extraInfo[512];
210     va_list marker;
211     va_start(marker, extraInfoFormat);
212     vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker);
213
214     ReportInfo(infoSink.info, EPrefixError, loc, reason, token, extraInfo);
215
216     va_end(marker);
217     ++numErrors;
218 }
219
220 void TParseContext::warning(TSourceLoc loc,
221                             const char* reason, const char* token,
222                             const char* extraInfoFormat, ...) {
223     char extraInfo[512];
224     va_list marker;
225     va_start(marker, extraInfoFormat);
226     vsnprintf(extraInfo, sizeof(extraInfo), extraInfoFormat, marker);
227
228     ReportInfo(infoSink.info, EPrefixWarning, loc, reason, token, extraInfo);
229
230     va_end(marker);
231 }
232
233 //
234 // Same error message for all places assignments don't work.
235 //
236 void TParseContext::assignError(int line, const char* op, TString left, TString right)
237 {
238     error(line, "", op, "cannot convert from '%s' to '%s'",
239           right.c_str(), left.c_str());
240 }
241
242 //
243 // Same error message for all places unary operations don't work.
244 //
245 void TParseContext::unaryOpError(int line, const char* op, TString operand)
246 {
247    error(line, " wrong operand type", op, 
248           "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
249           op, operand.c_str());
250 }
251
252 //
253 // Same error message for all binary operations don't work.
254 //
255 void TParseContext::binaryOpError(int line, const char* op, TString left, TString right)
256 {
257     error(line, " wrong operand types ", op, 
258             "no operation '%s' exists that takes a left-hand operand of type '%s' and "
259             "a right operand of type '%s' (or there is no acceptable conversion)", 
260             op, left.c_str(), right.c_str());
261 }
262
263 bool TParseContext::precisionErrorCheck(int line, TPrecision precision, TBasicType type){
264     switch( type ){
265     case EbtFloat:
266         if( precision == EbpUndefined ){
267             error( line, "No precision specified for (float)", "", "" );
268             return true;
269         }
270         break;
271     case EbtInt:
272         if( precision == EbpUndefined ){
273             error( line, "No precision specified (int)", "", "" );
274             return true;
275         }
276         break;
277     }
278     return false;
279 }
280
281 //
282 // Both test and if necessary, spit out an error, to see if the node is really
283 // an l-value that can be operated on this way.
284 //
285 // Returns true if the was an error.
286 //
287 bool TParseContext::lValueErrorCheck(int line, const char* op, TIntermTyped* node)
288 {
289     TIntermSymbol* symNode = node->getAsSymbolNode();
290     TIntermBinary* binaryNode = node->getAsBinaryNode();
291
292     if (binaryNode) {
293         bool errorReturn;
294
295         switch(binaryNode->getOp()) {
296         case EOpIndexDirect:
297         case EOpIndexIndirect:
298         case EOpIndexDirectStruct:
299             return lValueErrorCheck(line, op, binaryNode->getLeft());
300         case EOpVectorSwizzle:
301             errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
302             if (!errorReturn) {
303                 int offset[4] = {0,0,0,0};
304
305                 TIntermTyped* rightNode = binaryNode->getRight();
306                 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
307                 
308                 for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); 
309                                                p != aggrNode->getSequence().end(); p++) {
310                     int value = (*p)->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getIConst();
311                     offset[value]++;     
312                     if (offset[value] > 1) {
313                         error(line, " l-value of swizzle cannot have duplicate components", op, "", "");
314
315                         return true;
316                     }
317                 }
318             } 
319
320             return errorReturn;
321         default: 
322             break;
323         }
324         error(line, " l-value required", op, "", "");
325
326         return true;
327     }
328
329
330     const char* symbol = 0;
331     if (symNode != 0)
332         symbol = symNode->getSymbol().c_str();
333
334     const char* message = 0;
335     switch (node->getQualifier()) {
336     case EvqConst:          message = "can't modify a const";        break;
337     case EvqConstReadOnly:  message = "can't modify a const";        break;
338     case EvqAttribute:      message = "can't modify an attribute";   break;
339     case EvqUniform:        message = "can't modify a uniform";      break;
340     case EvqVaryingIn:      message = "can't modify a varying";      break;
341     case EvqInput:          message = "can't modify an input";       break;
342     case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
343     case EvqFrontFacing:    message = "can't modify gl_FrontFacing"; break;
344     case EvqPointCoord:     message = "can't modify gl_PointCoord";  break;
345     default:
346
347         //
348         // Type that can't be written to?
349         //
350         switch (node->getBasicType()) {
351         case EbtSampler2D:
352         case EbtSamplerCube:
353             message = "can't modify a sampler";
354             break;
355         case EbtVoid:
356             message = "can't modify void";
357             break;
358         default: 
359             break;
360         }
361     }
362
363     if (message == 0 && binaryNode == 0 && symNode == 0) {
364         error(line, " l-value required", op, "", "");
365
366         return true;
367     }
368
369
370     //
371     // Everything else is okay, no error.
372     //
373     if (message == 0)
374         return false;
375
376     //
377     // If we get here, we have an error and a message.
378     //
379     if (symNode)
380         error(line, " l-value required", op, "\"%s\" (%s)", symbol, message);
381     else
382         error(line, " l-value required", op, "(%s)", message);
383
384     return true;
385 }
386
387 //
388 // Both test, and if necessary spit out an error, to see if the node is really
389 // a constant.
390 //
391 // Returns true if the was an error.
392 //
393 bool TParseContext::constErrorCheck(TIntermTyped* node)
394 {
395     if (node->getQualifier() == EvqConst)
396         return false;
397
398     error(node->getLine(), "constant expression required", "", "");
399
400     return true;
401 }
402
403 //
404 // Both test, and if necessary spit out an error, to see if the node is really
405 // an integer.
406 //
407 // Returns true if the was an error.
408 //
409 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
410 {
411     if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
412         return false;
413
414     error(node->getLine(), "integer expression required", token, "");
415
416     return true;
417 }
418
419 //
420 // Both test, and if necessary spit out an error, to see if we are currently
421 // globally scoped.
422 //
423 // Returns true if the was an error.
424 //
425 bool TParseContext::globalErrorCheck(int line, bool global, const char* token)
426 {
427     if (global)
428         return false;
429
430     error(line, "only allowed at global scope", token, "");
431
432     return true;
433 }
434
435 //
436 // For now, keep it simple:  if it starts "gl_", it's reserved, independent
437 // of scope.  Except, if the symbol table is at the built-in push-level,
438 // which is when we are parsing built-ins.
439 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
440 // webgl shader.
441 //
442 // Returns true if there was an error.
443 //
444 bool TParseContext::reservedErrorCheck(int line, const TString& identifier)
445 {
446     static const char* reservedErrMsg = "reserved built-in name";
447     if (!symbolTable.atBuiltInLevel()) {
448         if (identifier.substr(0, 3) == TString("gl_")) {
449             error(line, reservedErrMsg, "gl_", "");
450             return true;
451         }
452         if (shaderSpec == SH_WEBGL_SPEC) {
453             if (identifier.substr(0, 6) == TString("webgl_")) {
454                 error(line, reservedErrMsg, "webgl_", "");
455                 return true;
456             }
457             if (identifier.substr(0, 7) == TString("_webgl_")) {
458                 error(line, reservedErrMsg, "_webgl_", "");
459                 return true;
460             }
461         }
462         if (identifier.find("__") != TString::npos) {
463             //error(line, "Two consecutive underscores are reserved for future use.", identifier.c_str(), "", "");
464             //return true;
465             infoSink.info.message(EPrefixWarning, "Two consecutive underscores are reserved for future use.", line);
466             return false;
467         }
468     }
469
470     return false;
471 }
472
473 //
474 // Make sure there is enough data provided to the constructor to build
475 // something of the type of the constructor.  Also returns the type of
476 // the constructor.
477 //
478 // Returns true if there was an error in construction.
479 //
480 bool TParseContext::constructorErrorCheck(int line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
481 {
482     *type = function.getReturnType();
483
484     bool constructingMatrix = false;
485     switch(op) {
486     case EOpConstructMat2:
487     case EOpConstructMat3:
488     case EOpConstructMat4:
489         constructingMatrix = true;
490         break;
491     default: 
492         break;
493     }
494
495     //
496     // Note: It's okay to have too many components available, but not okay to have unused
497     // arguments.  'full' will go to true when enough args have been seen.  If we loop
498     // again, there is an extra argument, so 'overfull' will become true.
499     //
500
501     int size = 0;
502     bool constType = true;
503     bool full = false;
504     bool overFull = false;
505     bool matrixInMatrix = false;
506     bool arrayArg = false;
507     for (int i = 0; i < function.getParamCount(); ++i) {
508         const TParameter& param = function.getParam(i);
509         size += param.type->getObjectSize();
510         
511         if (constructingMatrix && param.type->isMatrix())
512             matrixInMatrix = true;
513         if (full)
514             overFull = true;
515         if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
516             full = true;
517         if (param.type->getQualifier() != EvqConst)
518             constType = false;
519         if (param.type->isArray())
520             arrayArg = true;
521     }
522     
523     if (constType)
524         type->setQualifier(EvqConst);
525
526     if (type->isArray() && type->getArraySize() != function.getParamCount()) {
527         error(line, "array constructor needs one argument per array element", "constructor", "");
528         return true;
529     }
530
531     if (arrayArg && op != EOpConstructStruct) {
532         error(line, "constructing from a non-dereferenced array", "constructor", "");
533         return true;
534     }
535
536     if (matrixInMatrix && !type->isArray()) {
537         if (function.getParamCount() != 1) {
538           error(line, "constructing matrix from matrix can only take one argument", "constructor", "");
539           return true;
540         }
541     }
542
543     if (overFull) {
544         error(line, "too many arguments", "constructor", "");
545         return true;
546     }
547     
548     if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->size()) != function.getParamCount()) {
549         error(line, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
550         return true;
551     }
552
553     if (!type->isMatrix()) {
554         if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
555             (op == EOpConstructStruct && size < type->getObjectSize())) {
556             error(line, "not enough data provided for construction", "constructor", "");
557             return true;
558         }
559     }
560
561     TIntermTyped* typed = node->getAsTyped();
562     if (typed == 0) {
563         error(line, "constructor argument does not have a type", "constructor", "");
564         return true;
565     }
566     if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
567         error(line, "cannot convert a sampler", "constructor", "");
568         return true;
569     }
570     if (typed->getBasicType() == EbtVoid) {
571         error(line, "cannot convert a void", "constructor", "");
572         return true;
573     }
574
575     return false;
576 }
577
578 // This function checks to see if a void variable has been declared and raise an error message for such a case
579 //
580 // returns true in case of an error
581 //
582 bool TParseContext::voidErrorCheck(int line, const TString& identifier, const TPublicType& pubType)
583 {
584     if (pubType.type == EbtVoid) {
585         error(line, "illegal use of type 'void'", identifier.c_str(), "");
586         return true;
587     } 
588
589     return false;
590 }
591
592 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
593 //
594 // returns true in case of an error
595 //
596 bool TParseContext::boolErrorCheck(int line, const TIntermTyped* type)
597 {
598     if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
599         error(line, "boolean expression expected", "", "");
600         return true;
601     } 
602
603     return false;
604 }
605
606 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
607 //
608 // returns true in case of an error
609 //
610 bool TParseContext::boolErrorCheck(int line, const TPublicType& pType)
611 {
612     if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
613         error(line, "boolean expression expected", "", "");
614         return true;
615     } 
616
617     return false;
618 }
619
620 bool TParseContext::samplerErrorCheck(int line, const TPublicType& pType, const char* reason)
621 {
622     if (pType.type == EbtStruct) {
623         if (containsSampler(*pType.userDef)) {
624             error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
625         
626             return true;
627         }
628         
629         return false;
630     } else if (IsSampler(pType.type)) {
631         error(line, reason, getBasicString(pType.type), "");
632
633         return true;
634     }
635
636     return false;
637 }
638
639 bool TParseContext::structQualifierErrorCheck(int line, const TPublicType& pType)
640 {
641     if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
642         pType.type == EbtStruct) {
643         error(line, "cannot be used with a structure", getQualifierString(pType.qualifier), "");
644         
645         return true;
646     }
647
648     if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
649         return true;
650
651     return false;
652 }
653
654 bool TParseContext::parameterSamplerErrorCheck(int line, TQualifier qualifier, const TType& type)
655 {
656     if ((qualifier == EvqOut || qualifier == EvqInOut) && 
657              type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
658         error(line, "samplers cannot be output parameters", type.getBasicString(), "");
659         return true;
660     }
661
662     return false;
663 }
664
665 bool TParseContext::containsSampler(TType& type)
666 {
667     if (IsSampler(type.getBasicType()))
668         return true;
669
670     if (type.getBasicType() == EbtStruct) {
671         TTypeList& structure = *type.getStruct();
672         for (unsigned int i = 0; i < structure.size(); ++i) {
673             if (containsSampler(*structure[i].type))
674                 return true;
675         }
676     }
677
678     return false;
679 }
680
681 //
682 // Do size checking for an array type's size.
683 //
684 // Returns true if there was an error.
685 //
686 bool TParseContext::arraySizeErrorCheck(int line, TIntermTyped* expr, int& size)
687 {
688     TIntermConstantUnion* constant = expr->getAsConstantUnion();
689     if (constant == 0 || constant->getBasicType() != EbtInt) {
690         error(line, "array size must be a constant integer expression", "", "");
691         return true;
692     }
693
694     size = constant->getUnionArrayPointer()->getIConst();
695
696     if (size <= 0) {
697         error(line, "array size must be a positive integer", "", "");
698         size = 1;
699         return true;
700     }
701
702     return false;
703 }
704
705 //
706 // See if this qualifier can be an array.
707 //
708 // Returns true if there is an error.
709 //
710 bool TParseContext::arrayQualifierErrorCheck(int line, TPublicType type)
711 {
712     if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
713         error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str(), "");
714         return true;
715     }
716
717     return false;
718 }
719
720 //
721 // See if this type can be an array.
722 //
723 // Returns true if there is an error.
724 //
725 bool TParseContext::arrayTypeErrorCheck(int line, TPublicType type)
726 {
727     //
728     // Can the type be an array?
729     //
730     if (type.array) {
731         error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str(), "");
732         return true;
733     }
734
735     return false;
736 }
737
738 //
739 // Do all the semantic checking for declaring an array, with and 
740 // without a size, and make the right changes to the symbol table.
741 //
742 // size == 0 means no specified size.
743 //
744 // Returns true if there was an error.
745 //
746 bool TParseContext::arrayErrorCheck(int line, TString& identifier, TPublicType type, TVariable*& variable)
747 {
748     //
749     // Don't check for reserved word use until after we know it's not in the symbol table,
750     // because reserved arrays can be redeclared.
751     //
752
753     bool builtIn = false; 
754     bool sameScope = false;
755     TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
756     if (symbol == 0 || !sameScope) {
757         if (reservedErrorCheck(line, identifier))
758             return true;
759         
760         variable = new TVariable(&identifier, TType(type));
761
762         if (type.arraySize)
763             variable->getType().setArraySize(type.arraySize);
764
765         if (! symbolTable.insert(*variable)) {
766             delete variable;
767             error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str(), "");
768             return true;
769         }
770     } else {
771         if (! symbol->isVariable()) {
772             error(line, "variable expected", identifier.c_str(), "");
773             return true;
774         }
775
776         variable = static_cast<TVariable*>(symbol);
777         if (! variable->getType().isArray()) {
778             error(line, "redeclaring non-array as array", identifier.c_str(), "");
779             return true;
780         }
781         if (variable->getType().getArraySize() > 0) {
782             error(line, "redeclaration of array with size", identifier.c_str(), "");
783             return true;
784         }
785         
786         if (! variable->getType().sameElementType(TType(type))) {
787             error(line, "redeclaration of array with a different type", identifier.c_str(), "");
788             return true;
789         }
790
791         TType* t = variable->getArrayInformationType();
792         while (t != 0) {
793             if (t->getMaxArraySize() > type.arraySize) {
794                 error(line, "higher index value already used for the array", identifier.c_str(), "");
795                 return true;
796             }
797             t->setArraySize(type.arraySize);
798             t = t->getArrayInformationType();
799         }
800
801         if (type.arraySize)
802             variable->getType().setArraySize(type.arraySize);
803     } 
804
805     if (voidErrorCheck(line, identifier, type))
806         return true;
807
808     return false;
809 }
810
811 bool TParseContext::arraySetMaxSize(TIntermSymbol *node, TType* type, int size, bool updateFlag, TSourceLoc line)
812 {
813     bool builtIn = false;
814     TSymbol* symbol = symbolTable.find(node->getSymbol(), &builtIn);
815     if (symbol == 0) {
816         error(line, " undeclared identifier", node->getSymbol().c_str(), "");
817         return true;
818     }
819     TVariable* variable = static_cast<TVariable*>(symbol);
820
821     type->setArrayInformationType(variable->getArrayInformationType());
822     variable->updateArrayInformationType(type);
823
824     // special casing to test index value of gl_FragData. If the accessed index is >= gl_MaxDrawBuffers
825     // its an error
826     if (node->getSymbol() == "gl_FragData") {
827         TSymbol* fragData = symbolTable.find("gl_MaxDrawBuffers", &builtIn);
828         if (fragData == 0) {
829             infoSink.info.message(EPrefixInternalError, "gl_MaxDrawBuffers not defined", line);
830             return true;
831         }
832
833         int fragDataValue = static_cast<TVariable*>(fragData)->getConstPointer()[0].getIConst();
834         if (fragDataValue <= size) {
835             error(line, "", "[", "gl_FragData can only have a max array size of up to gl_MaxDrawBuffers", "");
836             return true;
837         }
838     }
839
840     // we dont want to update the maxArraySize when this flag is not set, we just want to include this 
841     // node type in the chain of node types so that its updated when a higher maxArraySize comes in.
842     if (!updateFlag)
843         return false;
844
845     size++;
846     variable->getType().setMaxArraySize(size);
847     type->setMaxArraySize(size);
848     TType* tt = type;
849
850     while(tt->getArrayInformationType() != 0) {
851         tt = tt->getArrayInformationType();
852         tt->setMaxArraySize(size);
853     }
854
855     return false;
856 }
857
858 //
859 // Enforce non-initializer type/qualifier rules.
860 //
861 // Returns true if there was an error.
862 //
863 bool TParseContext::nonInitConstErrorCheck(int line, TString& identifier, TPublicType& type)
864 {
865     //
866     // Make the qualifier make sense.
867     //
868     if (type.qualifier == EvqConst) {
869         type.qualifier = EvqTemporary;
870         error(line, "variables with qualifier 'const' must be initialized", identifier.c_str(), "");
871         return true;
872     }
873
874     return false;
875 }
876
877 //
878 // Do semantic checking for a variable declaration that has no initializer,
879 // and update the symbol table.
880 //
881 // Returns true if there was an error.
882 //
883 bool TParseContext::nonInitErrorCheck(int line, TString& identifier, TPublicType& type)
884 {
885     if (reservedErrorCheck(line, identifier))
886         recover();
887
888     TVariable* variable = new TVariable(&identifier, TType(type));
889
890     if (! symbolTable.insert(*variable)) {
891         error(line, "redefinition", variable->getName().c_str(), "");
892         delete variable;
893         return true;
894     }
895
896     if (voidErrorCheck(line, identifier, type))
897         return true;
898
899     return false;
900 }
901
902 bool TParseContext::paramErrorCheck(int line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
903 {    
904     if (qualifier != EvqConst && qualifier != EvqTemporary) {
905         error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier), "");
906         return true;
907     }
908     if (qualifier == EvqConst && paramQualifier != EvqIn) {
909         error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
910         return true;
911     }
912
913     if (qualifier == EvqConst)
914         type->setQualifier(EvqConstReadOnly);
915     else
916         type->setQualifier(paramQualifier);
917
918     return false;
919 }
920
921 bool TParseContext::extensionErrorCheck(int line, const TString& extension)
922 {
923     TExtensionBehavior::const_iterator iter = extensionBehavior.find(extension);
924     if (iter == extensionBehavior.end()) {
925         error(line, "extension", extension.c_str(), "is not supported");
926         return true;
927     }
928     if (iter->second == EBhDisable) {
929         error(line, "extension", extension.c_str(), "is disabled");
930         return true;
931     }
932     if (iter->second == EBhWarn) {
933         TString msg = "extension " + extension + " is being used";
934         infoSink.info.message(EPrefixWarning, msg.c_str(), line);
935         return false;
936     }
937
938     return false;
939 }
940
941 /////////////////////////////////////////////////////////////////////////////////
942 //
943 // Non-Errors.
944 //
945 /////////////////////////////////////////////////////////////////////////////////
946
947 //
948 // Look up a function name in the symbol table, and make sure it is a function.
949 //
950 // Return the function symbol if found, otherwise 0.
951 //
952 const TFunction* TParseContext::findFunction(int line, TFunction* call, bool *builtIn)
953 {
954     // First find by unmangled name to check whether the function name has been
955     // hidden by a variable name or struct typename.
956     const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
957     if (symbol == 0) {
958         symbol = symbolTable.find(call->getMangledName(), builtIn);
959     }
960
961     if (symbol == 0) {
962         error(line, "no matching overloaded function found", call->getName().c_str(), "");
963         return 0;
964     }
965
966     if (!symbol->isFunction()) {
967         error(line, "function name expected", call->getName().c_str(), "");
968         return 0;
969     }
970
971     return static_cast<const TFunction*>(symbol);
972 }
973
974 //
975 // Initializers show up in several places in the grammar.  Have one set of
976 // code to handle them here.
977 //
978 bool TParseContext::executeInitializer(TSourceLoc line, TString& identifier, TPublicType& pType, 
979                                        TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
980 {
981     TType type = TType(pType);
982
983     if (variable == 0) {
984         if (reservedErrorCheck(line, identifier))
985             return true;
986
987         if (voidErrorCheck(line, identifier, pType))
988             return true;
989
990         //
991         // add variable to symbol table
992         //
993         variable = new TVariable(&identifier, type);
994         if (! symbolTable.insert(*variable)) {
995             error(line, "redefinition", variable->getName().c_str(), "");
996             return true;
997             // don't delete variable, it's used by error recovery, and the pool 
998             // pop will take care of the memory
999         }
1000     }
1001
1002     //
1003     // identifier must be of type constant, a global, or a temporary
1004     //
1005     TQualifier qualifier = variable->getType().getQualifier();
1006     if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
1007         error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString(), "");
1008         return true;
1009     }
1010     //
1011     // test for and propagate constant
1012     //
1013
1014     if (qualifier == EvqConst) {
1015         if (qualifier != initializer->getType().getQualifier()) {
1016             error(line, " assigning non-constant to", "=", "'%s'", variable->getType().getCompleteString().c_str());
1017             variable->getType().setQualifier(EvqTemporary);
1018             return true;
1019         }
1020         if (type != initializer->getType()) {
1021             error(line, " non-matching types for const initializer ", 
1022                 variable->getType().getQualifierString(), "");
1023             variable->getType().setQualifier(EvqTemporary);
1024             return true;
1025         }
1026         if (initializer->getAsConstantUnion()) { 
1027             ConstantUnion* unionArray = variable->getConstPointer();
1028
1029             if (type.getObjectSize() == 1 && type.getBasicType() != EbtStruct) {
1030                 *unionArray = (initializer->getAsConstantUnion()->getUnionArrayPointer())[0];
1031             } else {
1032                 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
1033             }
1034         } else if (initializer->getAsSymbolNode()) {
1035             const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
1036             const TVariable* tVar = static_cast<const TVariable*>(symbol);
1037
1038             ConstantUnion* constArray = tVar->getConstPointer();
1039             variable->shareConstPointer(constArray);
1040         } else {
1041             error(line, " cannot assign to", "=", "'%s'", variable->getType().getCompleteString().c_str());
1042             variable->getType().setQualifier(EvqTemporary);
1043             return true;
1044         }
1045     }
1046  
1047     if (qualifier != EvqConst) {
1048         TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1049         intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
1050         if (intermNode == 0) {
1051             assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1052             return true;
1053         }
1054     } else 
1055         intermNode = 0;
1056
1057     return false;
1058 }
1059
1060 bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
1061 {
1062     ASSERT(aggrNode != NULL);
1063     if (!aggrNode->isConstructor())
1064         return false;
1065
1066     bool allConstant = true;
1067
1068     // check if all the child nodes are constants so that they can be inserted into 
1069     // the parent node
1070     TIntermSequence &sequence = aggrNode->getSequence() ;
1071     for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
1072         if (!(*p)->getAsTyped()->getAsConstantUnion())
1073             return false;
1074     }
1075
1076     return allConstant;
1077 }
1078
1079 // This function is used to test for the correctness of the parameters passed to various constructor functions
1080 // and also convert them to the right datatype if it is allowed and required. 
1081 //
1082 // Returns 0 for an error or the constructed node (aggregate or typed) for no error.
1083 //
1084 TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, TSourceLoc line)
1085 {
1086     if (node == 0)
1087         return 0;
1088
1089     TIntermAggregate* aggrNode = node->getAsAggregate();
1090     
1091     TTypeList::const_iterator memberTypes;
1092     if (op == EOpConstructStruct)
1093         memberTypes = type->getStruct()->begin();
1094     
1095     TType elementType = *type;
1096     if (type->isArray())
1097         elementType.clearArrayness();
1098
1099     bool singleArg;
1100     if (aggrNode) {
1101         if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
1102             singleArg = true;
1103         else
1104             singleArg = false;
1105     } else
1106         singleArg = true;
1107
1108     TIntermTyped *newNode;
1109     if (singleArg) {
1110         // If structure constructor or array constructor is being called 
1111         // for only one parameter inside the structure, we need to call constructStruct function once.
1112         if (type->isArray())
1113             newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
1114         else if (op == EOpConstructStruct)
1115             newNode = constructStruct(node, (*memberTypes).type, 1, node->getLine(), false);
1116         else
1117             newNode = constructBuiltIn(type, op, node, node->getLine(), false);
1118
1119         if (newNode && newNode->getAsAggregate()) {
1120             TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
1121             if (constConstructor)
1122                 return constConstructor;
1123         }
1124
1125         return newNode;
1126     }
1127     
1128     //
1129     // Handle list of arguments.
1130     //
1131     TIntermSequence &sequenceVector = aggrNode->getSequence() ;    // Stores the information about the parameter to the constructor
1132     // if the structure constructor contains more than one parameter, then construct
1133     // each parameter
1134     
1135     int paramCount = 0;  // keeps a track of the constructor parameter number being checked    
1136     
1137     // for each parameter to the constructor call, check to see if the right type is passed or convert them 
1138     // to the right type if possible (and allowed).
1139     // for structure constructors, just check if the right type is passed, no conversion is allowed.
1140     
1141     for (TIntermSequence::iterator p = sequenceVector.begin(); 
1142                                    p != sequenceVector.end(); p++, paramCount++) {
1143         if (type->isArray())
1144             newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
1145         else if (op == EOpConstructStruct)
1146             newNode = constructStruct(*p, (memberTypes[paramCount]).type, paramCount+1, node->getLine(), true);
1147         else
1148             newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
1149         
1150         if (newNode) {
1151             *p = newNode;
1152         }
1153     }
1154
1155     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
1156     TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
1157     if (constConstructor)
1158         return constConstructor;
1159
1160     return constructor;
1161 }
1162
1163 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
1164 {
1165     bool canBeFolded = areAllChildConst(aggrNode);
1166     aggrNode->setType(type);
1167     if (canBeFolded) {
1168         bool returnVal = false;
1169         ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
1170         if (aggrNode->getSequence().size() == 1)  {
1171             returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable,  type, true);
1172         }
1173         else {
1174             returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable,  type);
1175         }
1176         if (returnVal)
1177             return 0;
1178
1179         return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
1180     }
1181
1182     return 0;
1183 }
1184
1185 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
1186 // for the parameter to the constructor (passed to this function). Essentially, it converts
1187 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a 
1188 // float, then float is converted to int.
1189 //
1190 // Returns 0 for an error or the constructed node.
1191 //
1192 TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, TSourceLoc line, bool subset)
1193 {
1194     TIntermTyped* newNode;
1195     TOperator basicOp;
1196
1197     //
1198     // First, convert types as needed.
1199     //
1200     switch (op) {
1201     case EOpConstructVec2:
1202     case EOpConstructVec3:
1203     case EOpConstructVec4:
1204     case EOpConstructMat2:
1205     case EOpConstructMat3:
1206     case EOpConstructMat4:
1207     case EOpConstructFloat:
1208         basicOp = EOpConstructFloat;
1209         break;
1210
1211     case EOpConstructIVec2:
1212     case EOpConstructIVec3:
1213     case EOpConstructIVec4:
1214     case EOpConstructInt:
1215         basicOp = EOpConstructInt;
1216         break;
1217
1218     case EOpConstructBVec2:
1219     case EOpConstructBVec3:
1220     case EOpConstructBVec4:
1221     case EOpConstructBool:
1222         basicOp = EOpConstructBool;
1223         break;
1224
1225     default:
1226         error(line, "unsupported construction", "", "");
1227         recover();
1228
1229         return 0;
1230     }
1231     newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
1232     if (newNode == 0) {
1233         error(line, "can't convert", "constructor", "");
1234         return 0;
1235     }
1236
1237     //
1238     // Now, if there still isn't an operation to do the construction, and we need one, add one.
1239     //
1240     
1241     // Otherwise, skip out early.
1242     if (subset || (newNode != node && newNode->getType() == *type))
1243         return newNode;
1244
1245     // setAggregateOperator will insert a new node for the constructor, as needed.
1246     return intermediate.setAggregateOperator(newNode, op, line);
1247 }
1248
1249 // This function tests for the type of the parameters to the structures constructors. Raises
1250 // an error message if the expected type does not match the parameter passed to the constructor.
1251 //
1252 // Returns 0 for an error or the input node itself if the expected and the given parameter types match.
1253 //
1254 TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, TSourceLoc line, bool subset)
1255 {
1256     if (*type == node->getAsTyped()->getType()) {
1257         if (subset)
1258             return node->getAsTyped();
1259         else
1260             return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
1261     } else {
1262         error(line, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
1263                 node->getAsTyped()->getType().getBasicString(), type->getBasicString());
1264         recover();
1265     }
1266
1267     return 0;
1268 }
1269
1270 //
1271 // This function returns the tree representation for the vector field(s) being accessed from contant vector.
1272 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
1273 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
1274 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of 
1275 // a constant matrix.
1276 //
1277 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, TSourceLoc line)
1278 {
1279     TIntermTyped* typedNode;
1280     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1281
1282     ConstantUnion *unionArray;
1283     if (tempConstantNode) {
1284         unionArray = tempConstantNode->getUnionArrayPointer();
1285
1286         if (!unionArray) {  // this error message should never be raised
1287             infoSink.info.message(EPrefixInternalError, "ConstantUnion not initialized in addConstVectorNode function", line);
1288             recover();
1289
1290             return node;
1291         }
1292     } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
1293         error(line, "Cannot offset into the vector", "Error", "");
1294         recover();
1295
1296         return 0;
1297     }
1298
1299     ConstantUnion* constArray = new ConstantUnion[fields.num];
1300
1301     for (int i = 0; i < fields.num; i++) {
1302         if (fields.offsets[i] >= node->getType().getObjectSize()) {
1303             error(line, "", "[", "vector field selection out of range '%d'", fields.offsets[i]);
1304             recover();
1305             fields.offsets[i] = 0;
1306         }
1307         
1308         constArray[i] = unionArray[fields.offsets[i]];
1309
1310     } 
1311     typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
1312     return typedNode;
1313 }
1314
1315 //
1316 // This function returns the column being accessed from a constant matrix. The values are retrieved from
1317 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input 
1318 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a 
1319 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
1320 //
1321 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, TSourceLoc line)
1322 {
1323     TIntermTyped* typedNode;
1324     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1325
1326     if (index >= node->getType().getNominalSize()) {
1327         error(line, "", "[", "matrix field selection out of range '%d'", index);
1328         recover();
1329         index = 0;
1330     }
1331
1332     if (tempConstantNode) {
1333          ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1334          int size = tempConstantNode->getType().getNominalSize();
1335          typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
1336     } else {
1337         error(line, "Cannot offset into the matrix", "Error", "");
1338         recover();
1339
1340         return 0;
1341     }
1342
1343     return typedNode;
1344 }
1345
1346
1347 //
1348 // This function returns an element of an array accessed from a constant array. The values are retrieved from
1349 // the symbol table and parse-tree is built for the type of the element. The input 
1350 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a 
1351 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
1352 //
1353 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, TSourceLoc line)
1354 {
1355     TIntermTyped* typedNode;
1356     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1357     TType arrayElementType = node->getType();
1358     arrayElementType.clearArrayness();
1359
1360     if (index >= node->getType().getArraySize()) {
1361         error(line, "", "[", "array field selection out of range '%d'", index);
1362         recover();
1363         index = 0;
1364     }
1365
1366     int arrayElementSize = arrayElementType.getObjectSize();
1367
1368     if (tempConstantNode) {
1369          ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1370          typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
1371     } else {
1372         error(line, "Cannot offset into the array", "Error", "");
1373         recover();
1374
1375         return 0;
1376     }
1377
1378     return typedNode;
1379 }
1380
1381
1382 //
1383 // This function returns the value of a particular field inside a constant structure from the symbol table. 
1384 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
1385 // function and returns the parse-tree with the values of the embedded/nested struct.
1386 //
1387 TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, TSourceLoc line)
1388 {
1389     const TTypeList* fields = node->getType().getStruct();
1390     TIntermTyped *typedNode;
1391     int instanceSize = 0;
1392     unsigned int index = 0;
1393     TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
1394
1395     for ( index = 0; index < fields->size(); ++index) {
1396         if ((*fields)[index].type->getFieldName() == identifier) {
1397             break;
1398         } else {
1399             instanceSize += (*fields)[index].type->getObjectSize();
1400         }
1401     }
1402
1403     if (tempConstantNode) {
1404          ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
1405
1406          typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
1407     } else {
1408         error(line, "Cannot offset into the structure", "Error", "");
1409         recover();
1410
1411         return 0;
1412     }
1413
1414     return typedNode;
1415 }
1416
1417 //
1418 // Parse an array of strings using yyparse.
1419 //
1420 // Returns 0 for success.
1421 //
1422 int PaParseStrings(int count, const char* const string[], const int length[],
1423                    TParseContext* context) {
1424     if ((count == 0) || (string == NULL))
1425         return 1;
1426
1427     // setup preprocessor.
1428     if (InitPreprocessor())
1429         return 1;
1430     DefineExtensionMacros(context->extensionBehavior);
1431
1432     if (glslang_initialize(context))
1433         return 1;
1434
1435     glslang_scan(count, string, length, context);
1436     int error = glslang_parse(context);
1437
1438     glslang_finalize(context);
1439     FinalizePreprocessor();
1440     return (error == 0) && (context->numErrors == 0) ? 0 : 1;
1441 }
1442
1443 OS_TLSIndex GlobalParseContextIndex = OS_INVALID_TLS_INDEX;
1444
1445 bool InitializeParseContextIndex()
1446 {
1447     if (GlobalParseContextIndex != OS_INVALID_TLS_INDEX) {
1448         assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
1449         return false;
1450     }
1451
1452     //
1453     // Allocate a TLS index.
1454     //
1455     GlobalParseContextIndex = OS_AllocTLSIndex();
1456     
1457     if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
1458         assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
1459         return false;
1460     }
1461
1462     return true;
1463 }
1464
1465 bool FreeParseContextIndex()
1466 {
1467     OS_TLSIndex tlsiIndex = GlobalParseContextIndex;
1468
1469     if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
1470         assert(0 && "FreeParseContextIndex(): Parse Context index not initalised");
1471         return false;
1472     }
1473
1474     GlobalParseContextIndex = OS_INVALID_TLS_INDEX;
1475
1476     return OS_FreeTLSIndex(tlsiIndex);
1477 }
1478
1479 bool InitializeGlobalParseContext()
1480 {
1481     if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
1482         assert(0 && "InitializeGlobalParseContext(): Parse Context index not initalised");
1483         return false;
1484     }
1485
1486     TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));
1487     if (lpParseContext != 0) {
1488         assert(0 && "InitializeParseContextIndex(): Parse Context already initalised");
1489         return false;
1490     }
1491
1492     TThreadParseContext *lpThreadData = new TThreadParseContext();
1493     if (lpThreadData == 0) {
1494         assert(0 && "InitializeGlobalParseContext(): Unable to create thread parse context");
1495         return false;
1496     }
1497
1498     lpThreadData->lpGlobalParseContext = 0;
1499     OS_SetTLSValue(GlobalParseContextIndex, lpThreadData);
1500
1501     return true;
1502 }
1503
1504 bool FreeParseContext()
1505 {
1506     if (GlobalParseContextIndex == OS_INVALID_TLS_INDEX) {
1507         assert(0 && "FreeParseContext(): Parse Context index not initalised");
1508         return false;
1509     }
1510
1511     TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));
1512     if (lpParseContext)
1513         delete lpParseContext;
1514
1515     return true;
1516 }
1517
1518 TParseContextPointer& GetGlobalParseContext()
1519 {
1520     //
1521     // Minimal error checking for speed
1522     //
1523
1524     TThreadParseContext *lpParseContext = static_cast<TThreadParseContext *>(OS_GetTLSValue(GlobalParseContextIndex));
1525
1526     return lpParseContext->lpGlobalParseContext;
1527 }
1528