2 * Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
3 * Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "MathObject.h"
25 #include "ObjectPrototype.h"
26 #include "Operations.h"
28 #include <wtf/Assertions.h>
29 #include <wtf/MathExtras.h>
30 #include <wtf/RandomNumber.h>
31 #include <wtf/RandomNumberSeed.h>
35 ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
37 static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
38 static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
39 static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*);
40 static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*);
41 static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*);
42 static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*);
43 static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*);
44 static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*);
45 static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*);
46 static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*);
47 static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*);
48 static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*);
49 static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*);
50 static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*);
51 static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*);
52 static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
53 static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
54 static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
58 #include "MathObject.lut.h"
62 const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
64 /* Source for MathObject.lut.h
66 abs mathProtoFuncAbs DontEnum|Function 1
67 acos mathProtoFuncACos DontEnum|Function 1
68 asin mathProtoFuncASin DontEnum|Function 1
69 atan mathProtoFuncATan DontEnum|Function 1
70 atan2 mathProtoFuncATan2 DontEnum|Function 2
71 ceil mathProtoFuncCeil DontEnum|Function 1
72 cos mathProtoFuncCos DontEnum|Function 1
73 exp mathProtoFuncExp DontEnum|Function 1
74 floor mathProtoFuncFloor DontEnum|Function 1
75 log mathProtoFuncLog DontEnum|Function 1
76 max mathProtoFuncMax DontEnum|Function 2
77 min mathProtoFuncMin DontEnum|Function 2
78 pow mathProtoFuncPow DontEnum|Function 2
79 random mathProtoFuncRandom DontEnum|Function 0
80 round mathProtoFuncRound DontEnum|Function 1
81 sin mathProtoFuncSin DontEnum|Function 1
82 sqrt mathProtoFuncSqrt DontEnum|Function 1
83 tan mathProtoFuncTan DontEnum|Function 1
87 MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure)
88 : JSNonFinalObject(globalObject->globalData(), structure)
92 void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject)
94 Base::finishCreation(globalObject->globalData());
95 ASSERT(inherits(&s_info));
97 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
98 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
99 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
100 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
101 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
102 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
103 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
104 putDirectWithoutTransition(exec->globalData(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
107 bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot)
109 return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot);
112 bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
114 return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor);
117 // ------------------------------ Functions --------------------------------
119 EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec)
121 return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec))));
124 EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec)
126 return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec))));
129 EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec)
131 return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec))));
134 EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec)
136 return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec))));
139 EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec)
141 double arg0 = exec->argument(0).toNumber(exec);
142 double arg1 = exec->argument(1).toNumber(exec);
143 return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1)));
146 EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec)
148 return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec))));
151 EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec)
153 return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec))));
156 EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec)
158 return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec))));
161 EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec)
163 return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec))));
166 EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec)
168 return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec))));
171 EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec)
173 unsigned argsCount = exec->argumentCount();
174 double result = -std::numeric_limits<double>::infinity();
175 for (unsigned k = 0; k < argsCount; ++k) {
176 double val = exec->argument(k).toNumber(exec);
178 result = std::numeric_limits<double>::quiet_NaN();
181 if (val > result || (val == 0 && result == 0 && !signbit(val)))
184 return JSValue::encode(jsNumber(result));
187 EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec)
189 unsigned argsCount = exec->argumentCount();
190 double result = +std::numeric_limits<double>::infinity();
191 for (unsigned k = 0; k < argsCount; ++k) {
192 double val = exec->argument(k).toNumber(exec);
194 result = std::numeric_limits<double>::quiet_NaN();
197 if (val < result || (val == 0 && result == 0 && signbit(val)))
200 return JSValue::encode(jsNumber(result));
203 #if PLATFORM(IOS) && CPU(ARM_THUMB2)
205 static double fdlibmPow(double x, double y);
207 static ALWAYS_INLINE bool isDenormal(double x)
209 static const uint64_t signbit = 0x8000000000000000ULL;
210 static const uint64_t minNormal = 0x0001000000000000ULL;
211 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
214 static ALWAYS_INLINE bool isEdgeCase(double x)
216 static const uint64_t signbit = 0x8000000000000000ULL;
217 static const uint64_t infinity = 0x7fffffffffffffffULL;
218 return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
221 static ALWAYS_INLINE double mathPow(double x, double y)
223 if (!isDenormal(x) && !isDenormal(y)) {
224 double libmResult = pow(x,y);
225 if (libmResult || isEdgeCase(x) || isEdgeCase(y))
228 return fdlibmPow(x,y);
233 ALWAYS_INLINE double mathPow(double x, double y)
240 EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec)
244 double arg = exec->argument(0).toNumber(exec);
245 double arg2 = exec->argument(1).toNumber(exec);
248 return JSValue::encode(jsNaN());
249 if (isinf(arg2) && fabs(arg) == 1)
250 return JSValue::encode(jsNaN());
251 return JSValue::encode(jsNumber(mathPow(arg, arg2)));
254 EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec)
256 return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber()));
259 EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec)
261 double arg = exec->argument(0).toNumber(exec);
262 double integer = ceil(arg);
263 return JSValue::encode(jsNumber(integer - (integer - arg > 0.5)));
266 EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
268 return JSValue::encode(exec->globalData().cachedSin(exec->argument(0).toNumber(exec)));
271 EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
273 return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec))));
276 EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec)
278 return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
281 #if PLATFORM(IOS) && CPU(ARM_THUMB2)
283 // The following code is taken from netlib.org:
284 // http://www.netlib.org/fdlibm/fdlibm.h
285 // http://www.netlib.org/fdlibm/e_pow.c
286 // http://www.netlib.org/fdlibm/s_scalbn.c
288 // And was originally distributed under the following license:
291 * ====================================================
292 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
294 * Developed at SunSoft, a Sun Microsystems, Inc. business.
295 * Permission to use, copy, modify, and distribute this
296 * software is freely granted, provided that this notice
298 * ====================================================
301 * ====================================================
302 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
304 * Permission to use, copy, modify, and distribute this
305 * software is freely granted, provided that this notice
307 * ====================================================
310 /* __ieee754_pow(x,y) return x**y
313 * Method: Let x = 2 * (1+f)
314 * 1. Compute and return log2(x) in two pieces:
316 * where w1 has 53-24 = 29 bit trailing zeros.
317 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
318 * arithmetic, where |y'|<=0.5.
319 * 3. Return x**y = 2**n*exp(y'*log2)
322 * 1. (anything) ** 0 is 1
323 * 2. (anything) ** 1 is itself
324 * 3. (anything) ** NAN is NAN
325 * 4. NAN ** (anything except 0) is NAN
326 * 5. +-(|x| > 1) ** +INF is +INF
327 * 6. +-(|x| > 1) ** -INF is +0
328 * 7. +-(|x| < 1) ** +INF is +0
329 * 8. +-(|x| < 1) ** -INF is +INF
330 * 9. +-1 ** +-INF is NAN
331 * 10. +0 ** (+anything except 0, NAN) is +0
332 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
333 * 12. +0 ** (-anything except 0, NAN) is +INF
334 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
335 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
336 * 15. +INF ** (+anything except 0,NAN) is +INF
337 * 16. +INF ** (-anything except 0,NAN) is +0
338 * 17. -INF ** (anything) = -0 ** (-anything)
339 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
340 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
343 * pow(x,y) returns x**y nearly rounded. In particular
344 * pow(integer,integer)
345 * always returns the correct integer provided it is
349 * The hexadecimal values are the intended ones for the following
350 * constants. The decimal values may be used, provided that the
351 * compiler will convert from decimal to binary accurately enough
352 * to produce the hexadecimal values shown.
355 #define __HI(x) *(1+(int*)&x)
356 #define __LO(x) *(int*)&x
360 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
361 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
365 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
369 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
370 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
371 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
372 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
373 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
374 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
375 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
376 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
377 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
378 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
379 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
380 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
381 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
382 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
383 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
384 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
385 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
386 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
387 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
388 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
389 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
390 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
391 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
392 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
394 inline double fdlibmScalbn (double x, int n)
399 k = (hx&0x7ff00000)>>20; /* extract exponent */
400 if (k==0) { /* 0 or subnormal x */
401 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
404 k = ((hx&0x7ff00000)>>20) - 54;
405 if (n< -50000) return tiny*x; /*underflow*/
407 if (k==0x7ff) return x+x; /* NaN or Inf */
409 if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
410 if (k > 0) /* normal result */
411 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
413 if (n > 50000) /* in case integer overflow in n+k */
414 return huge*copysign(huge,x); /*overflow*/
415 else return tiny*copysign(tiny,x); /*underflow*/
417 k += 54; /* subnormal result */
418 __HI(x) = (hx&0x800fffff)|(k<<20);
422 double fdlibmPow(double x, double y)
424 double z,ax,z_h,z_l,p_h,p_l;
425 double y1,t1,t2,r,s,t,u,v,w;
426 int i0,i1,i,j,k,yisint,n;
430 i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
431 hx = __HI(x); lx = __LO(x);
432 hy = __HI(y); ly = __LO(y);
433 ix = hx&0x7fffffff; iy = hy&0x7fffffff;
435 /* y==zero: x**0 = 1 */
436 if((iy|ly)==0) return one;
438 /* +-NaN return x+y */
439 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
440 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
443 /* determine if y is an odd int when x < 0
444 * yisint = 0 ... y is not an integer
445 * yisint = 1 ... y is an odd int
446 * yisint = 2 ... y is an even int
450 if(iy>=0x43400000) yisint = 2; /* even integer y */
451 else if(iy>=0x3ff00000) {
452 k = (iy>>20)-0x3ff; /* exponent */
455 if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
458 if((j<<(20-k))==iy) yisint = 2-(j&1);
463 /* special value of y */
465 if (iy==0x7ff00000) { /* y is +-inf */
466 if(((ix-0x3ff00000)|lx)==0)
467 return y - y; /* inf**+-1 is NaN */
468 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
469 return (hy>=0)? y: zero;
470 else /* (|x|<1)**-,+inf = inf,0 */
471 return (hy<0)?-y: zero;
473 if(iy==0x3ff00000) { /* y is +-1 */
474 if(hy<0) return one/x; else return x;
476 if(hy==0x40000000) return x*x; /* y is 2 */
477 if(hy==0x3fe00000) { /* y is 0.5 */
478 if(hx>=0) /* x >= +0 */
484 /* special value of x */
486 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
487 z = ax; /*x is +-0,+-inf,+-1*/
488 if(hy<0) z = one/z; /* z = (1/|x|) */
490 if(((ix-0x3ff00000)|yisint)==0) {
491 z = (z-z)/(z-z); /* (-1)**non-int is NaN */
493 z = -z; /* (x<0)**odd = -(|x|**odd) */
501 /* (x<0)**(non-int) is NaN */
502 if((n|yisint)==0) return (x-x)/(x-x);
504 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
505 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
508 if(iy>0x41e00000) { /* if |y| > 2**31 */
509 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
510 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
511 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
513 /* over/underflow if x is not close to one */
514 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
515 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
516 /* now |1-x| is tiny <= 2**-20, suffice to compute
517 log(x) by x-x^2/2+x^3/3-x^4/4 */
518 t = ax-one; /* t has 20 trailing zeros */
519 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
520 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
521 v = t*ivln2_l-w*ivln2;
526 double ss,s2,s_h,s_l,t_h,t_l;
528 /* take care subnormal number */
530 {ax *= two53; n -= 53; ix = __HI(ax); }
531 n += ((ix)>>20)-0x3ff;
533 /* determine interval */
534 ix = j|0x3ff00000; /* normalize ix */
535 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
536 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
537 else {k=0;n+=1;ix -= 0x00100000;}
540 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
541 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
546 /* t_h=ax+bp[k] High */
548 __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
549 t_l = ax - (t_h-bp[k]);
550 s_l = v*((u-s_h*t_h)-s_h*t_l);
551 /* compute log(ax) */
553 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
558 t_l = r-((t_h-3.0)-s2);
559 /* u+v = ss*(1+...) */
562 /* 2/(3log2)*(ss+...) */
566 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
567 z_l = cp_l*p_h+p_l*cp+dp_l[k];
568 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
570 t1 = (((z_h+z_l)+dp_h[k])+t);
572 t2 = z_l-(((t1-t)-dp_h[k])-z_h);
575 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
578 p_l = (y-y1)*t1+y*t2;
583 if (j>=0x40900000) { /* z >= 1024 */
584 if(((j-0x40900000)|i)!=0) /* if z > 1024 */
585 return s*huge*huge; /* overflow */
587 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
589 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
590 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
591 return s*tiny*tiny; /* underflow */
593 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
597 * compute 2**(p_h+p_l)
602 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
603 n = j+(0x00100000>>(k+1));
604 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
606 __HI(t) = (n&~(0x000fffff>>k));
607 n = ((n&0x000fffff)|0x00100000)>>(20-k);
614 v = (p_l-(t-p_h))*lg2+t*lg2_l;
618 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
619 r = (z*t1)/(t1-two)-(w+z*w);
623 if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
624 else __HI(z) += (n<<20);